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Abstract—Analyzing and maintaining large software systems
is a challenging task due to the sheer amount of information
contained therein. To overcome this problem, Steinbrückner
developed a visualization technique named EvoStreets. Utilizing
the city metaphor, EvoStreets are well suited to visualize the
hierarchical structure of a software as well as hotspots regarding
certain aspects. Early implementations of this approach use three-
dimensional rendering on regular two-dimensional displays. Re-
cently, though, researchers have begun to visualize EvoStreets
in virtual reality using head-mounted displays, claiming that this
environment enhances user experience. Yet, there is little research
on comparing the differences of EvoStreets visualized in virtual
reality with EvoStreets visualized in conventional environments.

This paper presents a controlled experiment, involving 34
participants, in which we compared the EvoStreet visualization
technique in different environments, namely, orthographic pro-
jection with keyboard and mouse, 2.5D projection with keyboard
and mouse, and virtual reality with head-mounted displays and
hand-held controllers. Using these environments, the participants
had to analyze existing Java systems regarding software clones.
According to our results, it cannot be assumed that: 1) the
orthographic environment takes less time to find an answer, 2)
the 2.5D and virtual reality environments provide better results
regarding the correctness of edge-related tasks compared to the
orthographic environment, and 3) the performance regarding
time and correctness differs between the 2.5D and virtual reality
environments.

I. INTRODUCTION

Software visualization exploits the human visual percep-
tion, in particular the ability to recognize patterns, to depict
different aspects of a software system. In the last decades,
various visualization techniques have been developed that are
supposed to assist developers in assessing software regarding
certain characteristics. Among these are EvoStreets proposed
by Steinbrückner [1], which build on the software-as-a-city
metaphor originally introduced as CodeCity by Wettel et
al. [2], [3], [4]. EvoStreets show the hierarchical structure of a
system (e.g., the package structure in Java) in terms of nested
streets. The streets fork orthogonally at each level change in
the hierarchy and streets corresponding to higher levels are
wider than those corresponding to lower levels. Leaves of the
hierarchy (e.g., classes in Java, depending on the visualization
depth) are shown as cuboids in 3D, where the height, breadth,
width, and color range depict certain metrics about a leaf in

Fig. 1: Visualizing software clones with EvoStreets.

the hierarchy (cf. Figure 1). Generally, dependencies between
nodes are often visualized by hierarchically bundled edges [5].

Initially, implementations of the CodeCity and EvoStreets
approaches have used two- and three-dimensional rendering on
regular two-dimensional displays, that is, they are rendered in
isometric or 2.5D projection. When visualized from above, for
instance, to give a birds-eye view, they may also be rendered
in orthographic projection, loosing the third dimension (where
a CodeCity essentially morphs into a classical Treemap [6]).
Nowadays, though, immersive virtual reality systems (IVRS)
as well as head-mounted displays (HMD) are available for
the consumer market, allowing to bring the city metaphor into
the virtual reality (VR). Studies have shown that HMDs may
enhance the orientation in three-dimensional VR environments
as they allow to rotate and move more naturally as opposed to
traditional approaches [7]. Under the assumption that VR may
also assists in the use of EvoStreets, by offering more intuitive
interactions, tools supporting IVRS and HMDs have been
developed lately [8], [9]. Yet, little research has been done
on the benefits of using VR over using non-VR environments
in EvoStreets.

Contributions. In this paper we present a controlled exper-
iment in which 34 participants, by means of the EvoStreets
approach, analyzed existing Java systems regarding software
clones. After short introductions, each participant had to solve
three different tasks in three different environments: Ortho-
graphic projection, 2.5D projection, and VR with HMD—one



task per environment. The experimental design was chosen to
investigate the following research questions:

RQ1 Does orthographic projection allow a human beholder
to solve tasks involving visually comparing the number
of nodes or edges more quickly and accurately? 2.5D
and VR may suffer from occlusion. On the other
hand, 2.5D and VR offer one more dimension over
orthographic projection, which can be exploited to
change the perspective in order to inspect otherwise
occluded elements.

RQ2 The main differences between 2.5D and VR are the
immersion and the interaction. Does these differences
have any effect on time and correctness between 2.5D
and VR in task solving?

RQ3 The 2D orthographic environment offers only a two-
dimensional projection. 2.5D and VR, on the other side,
offer both three dimensions, but they differ in how one
moves (keyboard versus controllers and head turning).
Do these different interaction methods effect how humans
move around?

The remainder of the paper is organized as follows. The
next section presents related research. Section III describes
our experimental design and Section IV discusses its results.
Section V concludes.

II. RELATED WORKS

This section describes related research. We will first de-
scribe in more details the evolution of visualizations based on
the city metaphor, which is the type of visualization in the
focus of our experiment, and then summarize related work
in the area of navigation and interaction design in virtual
environments in general.

A. Code-City Visualization

Treemaps [6] are an early approach developed to depict
the hierarchy of an arbitrary information structure in a space-
economically manner, which are also well suited for visual-
izing the hierarchical structure of large size software systems
[10] as well as to highlight hotspots regarding specific aspects
[11]. The hierarchy is shown by recursively subdividing a
given area, for instance, a rectangle, into subareas according
to the structure that is to be visualized—classes in packages,
files in directories, modules in subsystems, and so forth.
This creates a tree of areas whose leaves represent particular
software elements such as classes or files. The size of the
leaves is proportional to a predefined software metric, for
instance, lines of code, allowing to determine large elements
quickly. Hotspots, on this basis, are depicted by coloring the
leaf areas according to a second metric, for example, by
applying a color gradient from green to red with respect to
the cyclomatic complexity of an element.

Utilizing the third dimension, an additional metric can be
depicted by mapping its value to the height of the correspond-

ing surface, yielding three-dimensional blocks rather than two-
dimensional areas [2], [3], [4]. Due to the effect of perceiving
these blocks as a city, this technique is known as CodeCity.
Treemaps and CodeCities, on one hand, are well suited to
visualize large software systems in limited space but, on
the other hand, have the disadvantage of being inconvenient
when the underlying structure changes over time [12]. For
example, when analyzing the evolution of a system—elements
are added, removed, or relocated, the layout may change
radically and thus the mental map of the observer may be
lost. Moreover, comprehending the hierarchy is a challenging
task due to missing distinct patterns in the city.

To overcome these shortcomings, Steinbrückner introduced
a visualization technique named EvoStreets [1]. Harnessing
the city metaphor, EvoStreets visualize a software’s structures
using road junctions rather than subdivided areas. That is,
each level of the hierarchy is depicted by an individual line,
representing a street within the city. The lower a level is,
the thinner the corresponding street gets. The leaves of the
hierarchy, in turn, are depicted using three dimensional blocks
as in the CodeCity approach. Subsequently, the generated
layout allocates more space but, at the same time, is more
robust to changes in the underlying structure and may feature
more distinct patterns of city districts that help in navigation
thereby maintaining the mental map.

Our long-term goal is to visualize evolving software. For
this reason, we have chosen EvoStreets for our experiment
because—in contrast to CodeCities in the line of Wettel’s
seminal work [13]—it has a strong continuity over changes be-
tween versions and provides a structure that stretches itself out,
leaving more space between objects of interest [1]. Moreover,
in early prototypes by which we explored CodeCities in VR we
made the experience that everything looks alike if one walks
on the street, similarly to a stroll through Manhattan with
skyscrapers left and right. Likewise, if one flies above the city
to get an overview, the city appears always as nested rectangle
which offers little visual cues for preserving the mental map.
Because the layout of EvoStreets is much more ramified and
its branches often have very different lengths and patterns, it
is easier to turn them without loosing the orientation. And
last but not least, for virtual environments that are meant to
be explored and not only to be seen from afar we can take
advantage of the infinite virtual space in VR when rendering
EvoStreets.

Knight and Munro gave an overview on VR for software
visualization as early as 2000 [14]. Since then various other
researchers have used VR and 3D for software visualization
for static information [15], [16], [17], [18], [19], [20], [21],
[22] or for dynamic data such as resource bottlenecks or
memory leaks [23], [24]. Elliott et al. discuss the affordances
and challenges VR in software engineering and present ideas
on how it can be used for code reviews [25]. Baum et al.
developed a tool for prototyping and evaluating different kinds
of software visualizations in 3D [26]. We refer the reader
interested in software visualization in general to one of the
many surveys that exist on this subject [27], [28], [29], [30],



[31], [32], [33], [34], [35].

B. Virtual Reality Versus Desktop

Navigation in virtual environments has been researched for
a long time outside the software visualization community [36],
[37], [38] and will continue to be a research topic because of
the fast progress in hardware and rendering techniques. Sousa
Santos et al. give an overview on the virtual environments,
discussing several papers that compared HMDs to desktop
environments [39]. In their experiment on navigation in a
virtual maze, they found that—although users were generally
satisfied with the VR system and found the HMD interaction
intuitive and natural—most performed actually better in the
desktop environment.

Ruddle et al. investigated the navigation in computer-
simulated worlds with HMDs and with traditional desktop en-
vironments [40], [41]. In one of their experiments, participants
had to navigate within large virtual buildings, consisting of one
floor with nine rooms and one corridor [40]. The experiment
was a repeated round tour through several rooms. In a second
experiment, they looked into proprioceptive feedback and its
influence on navigation within a virtual maze [41]. In the first
experiment, they found that the HMD had an advantage to
the speed of the participants [40], in contrast to their later
experiment [41] and to Sousa Santos et al.’s experiment [39],
which both took place in a maze. What exactly caused these
conflicting results is a subject of further research.

Other experiments targeted at spatial cognitive capabilities
within virtual environments. Homing tasks [42]—also known
as triangle completion tasks [43]—were used to observe the
influence of the amount of visual-only spatial information on
the spatial orientation of humans. The task of the experimental
subjects was to move a cylinder in a very constrained virtual
environment. The researchers found a strong association of
triangle layout on homing performance, but no effect of
geometrical fields of view; that is, variations in the amount
of simultaneously visible spatial information did not influence
the acquisition of spatial knowledge in the environments used.
Whether and how these results obtained for very specific
geometrical problems can be transferred to navigation in
virtual software cities is unclear.

Compared to classical software visualizations, 3D repre-
sentations of software have the added value of the spatial
dimension. However, in our scenario, this spatial dimension
can only be used by explorers of the software if they have
orientation. In order to acquire orientation, it is necessary to
move in the environment [37], [44]. Locomotion comprises
ways to move through virtual worlds such as teleportation,
flying, etc. Variants of locomotion differ also in who is in
control. A system can transport a user from one point to
another one, or a user can decide on his or her own where
to move. Bowman et al. [36] investigated the impact of
different types of locomotion on the spatial orientation in
virtual environments in a maze-based experiment. They found
that flying controlled by the human better supports spatial

orientation. Moreover, continuous movement is advantageous
for the formation of a spatial model [36], [37], [45], [44].

In our experiment described later, we chose user-controlled
flying with a constant speed. This way of locomotion has
shown to be simple and intuitive and decreases the chances of
sickness. A flight metaphor offers—even in reality—the high-
est flexibility of movement, continuous updating of the spatial
perception (as opposed to teleportation), and a bird’s eye view
on demand. Many other types of movement sometimes used
in modern computer games seem to be of limited suitability
for the acquisition of spatial orientation because they tend to
lead to disorientation [36].

Many of these experiments described above have been
conducted in small and/or maze-like virtual environments
not showing software data. So for the purpose of software
comprehension through exploration of code-city visualizations
findings might differ. This is especially true for visualizations
of modern software systems that consist of several thousands
of entities shown as buildings. Very recently, however, Rüdel et
al. have conducted an experiment on how successfully humans
orient themselves in EvoStreets in 2.5D and VR, respectively
[9]. The participants had to solve a homing task, that is,
find their way back to the place where they started. Their
primary hypothesis was that the HMD environment would
make it easier to gain a spatial orientation inside of software
cities in comparison to a 2.5D environment but they found
no statistically significant evidence for it in their controlled
experiment with 20 participants

In an experiment, interaction must be easy to learn, so
that neither the interaction nor learning effects influence the
results too much. Mine provides an overview on different
approaches for 3D and VR [46] as well as Guan and Zheng,
and Nielsen et al. in regards to gestures [47], [48]. In our
experiment we decided to use the simple pointing gesture
for the HMD to move in our EvoStreets, using standard VR
controllers activated with a button on the controller. For the
desktop environments rendering the orthographic projection
and 2.5D, we used a mouse and keyboard based on the
common WASDQE input method widely used in computer
games and applications for graphic modeling (the letters in
WASDQE are the keys on the keyboard to be pressed for
movements). Other research that compared the WASDQE
input method were described by McMahan et al. [49], Nacke
et al. [50] and Rüdel et al. [9].

III. CONTROLLED EXPERIMENT

In this section, we describe our controlled experiment ad-
dressing our research questions outlined in Section I. We will
first introduce the three different environments compared in
the experiment (orthographic projection, 2.5D, and VR), then
state our operational hypotheses derived from our research
questions, describe the experimental subjects and objects, and
what kinds of software attributes were mapped onto which
visual features of the EvoStreets, and finally the tasks to be
solved by the participants.



Fig. 2: The EvoStreets of Guava used as tutorial for the 2D
environment.

The tasks were derived from a typical visual-analytics
context in which a human beholder must investigate cloning
in a software system by visually compare nodes and edges in
EvoStreets. For details refer to Section III-D

A. Compared Environments

The main objective of our experiment was to investigate
the use of EvoStreets in the environments described below.
Accordingly, each task to be solved by the participants took
place in one of these environments.

2D orthographic environment (2D): The EvoStreets of
the corresponding task are rendered in orthographic bird’s
eye view on a regular two-dimensional display as shown in
Figure 2. Hence, only a block’s area viewed from the top, but
not its height is perceivable. Using a keyboard and mouse, the
participants were able to move, rotate, and zoom the scene as
desired.

2.5D environment (2.5D): The EvoStreets were projected
to the display similar to the orthographic environment but
rendered in three dimensions as shown in Figure 3. By
adjusting the scene—again using a keyboard and mouse—the
participants were able to move within the city and view it from
different perspectives.

Virtual reality environment (VR): This environment uses
the same three-dimensional rendering approach as the 2.5D
environment, but presents the EvoStreet of the corresponding
task on a stereoscopic head-mounted display. Unlike the other
environments, this allows to view the entire city in a real three-
dimensional, stereoscopic manner. By rotating their heads
and bodies, as well as by using hand-held controllers, the
participants were able to adjust the scene as needed. For our
experiment, we used the head-mounted display and hand-held
controller kit from HTC Vive.

We used the EvoStreets implementation developed by Rüdel
et al. [9]—named SCOOP—who offered us their implementa-
tion as an Unreal Engine 4 plugin1. The plugin is capable of
rendering EvoStreets for arbitrary software systems. Metrics
can be depicted by mapping their values to the width, breadth,
height, and color of the corresponding elements, respectively.
Likewise, relations between elements can be visualized with
hierarchically bundled edges which we used to show that two

1https://www.unrealengine.com

Fig. 3: The EvoStreets of Guava using the same visual
attributes as in Figure 2, but rendered in three dimensions.

files are mutually cloned. All environments show exactly the
same information so that a fair comparison can be made.

We only had to specify those visual parameters but oth-
erwise did not have to make any changes in Rüdel et al.’s
implementation except for one addition. We extended SCOOP
by a position tracking component. During the task completion,
this component continuously logged the location and the rota-
tion of the participant, if necessary the orthographic distance
of the environment and other tasks specific data.

For all tasks we used the same simple gaming-ready PC
with an NVIDIA GeForce GTX 1070 graphics card and a
standard 24′′ LCD display for the desktop tasks. More details
on which software aspects are mapped onto which visual
attributes follow in Section III-E.

B. Hypotheses

Research question RQ1 is asking whether there is any
difference in human performance in tasks involving visually
comparing the number of nodes or edges in EvoStreets for
the three different environments (2D, 2.5D, VR). In contrast
to 2D, utilizing the third dimension, 2.5D and VR are capable
of depicting an additional metric by mapping the metric value
to the height of the corresponding area. This, however, leads
to a visualization in which nodes obscure each other in certain
situations. Thus, additional movement interactions are required
to view a city from different perspectives in order to access all
available information. Compared to orthographic projection in
2D, these movement interactions engross more mental capacity
and, thus, may have a negative effect on the time required to
find an answer. Moreover, 2D, by design, is well suited to give
a fast overview of the visualized scene, allowing to compare
elements quickly. This leads us to our first hypothesis:

H1.T: In EvoStreets, the time required to find an answer using
orthographic projection in 2D is shorter than using 2.5D
projection or virtual reality.

As mentioned before, 2.5D and VR offer more advanced
movement interactions to view a city from different perspec-
tives. This may in particular be useful when exploring a city



with thousands of blocks and edges connecting blocks. In
orthographic projection edges overlie blocks and, thus, may
be more difficult to distinguish—the more edges are visualized
the more visual clutter is present. This may have a negative
effect on the correctness of findings. To test whether this is
the fact, we formulate our next hypothesis:

H1.C: Regarding edge-related tasks, there are more correct
answers in EvoStreets using 2.5D projection or virtual
reality than in EvoStreets using orthographic projection.

Note that H1.Crefers explicitly only to edge-related tasks
where the overlay of blocks and edges causes visual clutter.
If a task requires to compare nodes rather than edges and the
edges occlude nodes, edges could simply be hidden on demand
by the user. Hiding nodes in edge-related tasks, however, does
not work because otherwise the source and target of edges
would disappear.

Hypotheses H1.C and H1.T are operationalizations of re-
search question RQ1, in which we relate two-dimensional vi-
sualization (orthographic projection) versus three-dimensional
visualization (2.5D and VR). In research question RQ2, we
relate only the two three-dimensional visualizations, namely,
2.5D and VR, to each other.

There are reasons to believe that VR allows one to more
closely inspect details, which should correspond to more
correct results. VR offers a more immersive experience and the
interaction is more natural: head turning immediately allows
one to seize a block and compare it to others or to visually
follow an edge from a given point of view. Humans are
very good in focusing objects and using their hands (here:
holding controllers) in parallel and independently, which is
less true for looking at a fixed picture shown on a monitor
and hitting keys on a keyboard for interaction. On the other
hand, there are also reasons to believe why 2.5D may ease
finding correct answers. Developers are familiar with computer
monitors, mice, and keyboards. And viewing the streets from
behind a windshield—similar to the impression of looking at
EvoStreets in 2.5D—is a natural experience, too. 2.5D offers a
“frozen” view which may help in comparing nodes and edges
while the eye wanders around the scene. The immersion in
VR may even distract the human beholder from the actual
task. In summary, we have no sufficient arguments why either
of the two environments is expected to be better than the other
one, but we have enough reasons to believe that they may at
least be different. For these reasons, we postulate the following
undirected hypothesis:

H2.C: The correctness in solving tasks related to nodes as
well as edges differs in VR and 2.5D.

Many developers are well familiar with navigation using
a keyboard. They can navigate quickly in their integrated
development environments using keyboard and mouse. Many
developers also have a background in computer games, where
WASDQE navigation is very common. They are expected to be
less familiar with navigation in VR. Even if they use VR every
now and then, overall they will spend their time mostly in front

of a computer with keyboard and mouse. Hence, we might
expect that they move faster in 2.5D than in VR. As a matter
of fact, Rüdel et al. found in their experiment comparing
2.5D and VR for homing tasks that their participants moved
somewhat faster in the 2.5D rather than VR environment,
although the difference could not be shown to be statistically
significant [9]. One most note though that navigation is only
one part of the overall effort for task solving. Inspecting details
is another one. Because VR may arguably offer better means
to inspect details (see the discussion above for hypothesis
H1.C), we expect our participants to also take advantage of
these, which may require additional time or save time—we
cannot know in advance. In summary, there are pros and cons
for both environments and we have no strong conjecture that
one outperforms the other one, yet we think there are enough
reasons to assume that they are different as formulated by the
next undirected hypothesis:

H2.T: The time needed to solve node as well as edge related
tasks differs in VR and 2.5D.

The last research question RQ3 asks whether the use of
2.5D (with monitor, mouse and keyboard) or VR (with HMD
and controllers) has any effect on how humans moving in
these different environments. As a matter of fact, we did
not formulate an operational hypothesis upfront to be fal-
sified/confirmed in the experiment. Rather we recorded the
trajectory of the participants and, much to our surprise, found
a difference when we overlaid these after the experiment for
2.5D and VR. Because this observation arose in the course of
the experiment and was not expected at its outset—and also
because it is difficult to quantify, we refrain from formulating
it as an operational hypothesis here. Rather we will tackle this
research question more qualitatively.

We note that weaknesses of either one of the three different
environments may be compensated by additional interaction.
For instance, in orthographic projection one could simply hide
the edges on demand by the user to have an unblocked view on
all blocks. Yet, that requires additional interaction. EvoStreets
are claimed to be designed to answer the kinds of questions
asked in our experiment immediately and visually by simply
looking. Likewise, all the answers to our questions could be
computed by algorithms so that a human would not even have
to look at the EvoStreets. However, EvoStreets are advocated
as a tool for visual analytics that leverages a human’s immedi-
ate visual perception. Visual analytics acknowledges that many
questions are raised only through looking at a visualization.
It does not assume that a human analyst is aware of all
possible questions in advance, even more so a developer of
a tool intended to support software analytics cannot know in
advance all possible questions a user of her/his tool is trying to
answer later. Visualization is intended to be helpful at an early
stage of an investigation where concrete hypotheses cannot be
formulated yet, let alone precise answers be computed.



(a) Task 1: Which of these two systems contains
more fragments cloned in other source files?

(b) Task 2: Which pair of subsystems is mutually
cloned the most?

(c) Task 3: Which subsystem accommodates the
majority of source files containing clones?

Fig. 4: Visualization of the scenarios of our three tasks as 2.5D projections. S marks the starting point of the exploration.

C. Participants and Experimental Objects

In order to verify our hypotheses, we conducted a controlled
experiment with 34 participants. They were recruited through
convenience sampling. The sample comprises 17 advanced
undergraduate students of a running VR project on EvoStreets
in our research group, 5 students of software engineering
courses taught by our research group at graduate and advanced
undergraduate levels, 3 other students, 5 researchers of our
research group, 2 scientific assistants from different research
groups at our university, and 2 professional developers. Among
these were 3 women. Their age ranged from 19 to 63. 28 out
of the 34 participants had prior experiences in VR. All of
them are formally trained computer scientists (although not
all of them have their formal degree yet as explained above).
To counter learning effects between tasks, we randomly sep-
arated the participants into six different groups with 5 to 6
members, each in turn using the environments in latin squared
order. Participation was voluntary. Neither any incentive nor
disincentive was given for participation and there existed no
time pressure.

As stated before, by means of the EvoStreets visualization
approach deployed in different environments, each participant
had to solve three different tasks in which existing Java sys-
tems had to be analyzed regarding software clones. We decided
to use software clones because studies have shown that clones
are a common issue in daily software development, therefore
being relevant for all kinds of developers [51]. Moreover, a
multitude of sophisticated clone detection tools are available,
allowing to examine and export findings conveniently. Using
the Axivion Bauhaus Suite2, we analyzed the Java systems
in Table I. Guava was used as a training system by the
participants before each task until they felt comfortable with
the environment. All participants began at the same starting
point, denoted as S in Figure 4.

TABLE I: Java systems used for our experiment. Guava was
used for training.

Name Lines of Code Files Findings

(Guava) 75,042 516 53
Jillion 75,520 929 66
JRuby 227,145 1360 110
Spring Boot 181,795 3042 228

2https://www.axivion.com/en

D. Visual Mapping

Figure 2 shows the EvoStreets of Guava used for the tutorial
in 2D and Figure 3 the same rendered in three dimensions.
The street layout is auto-generated based on the hierarchy
of the files and directories. Every street in our EvoStreets
visualization represents a directory containing Java source files
or other directories, the nodes represent Java source files and
an undirected edge between two nodes indicates that these two
Java source files contain similar code fragments, so called
clones. In order to identify files that are mutually cloned,
we used SCOOP’s hierarchically bundled edges to visually
connect the Java files sharing clone code [5].

As a metric, we used the clone rate (fraction of cloned
tokens among all tokens) of each file. We mapped the metric
value proportionally onto the area of the ground square (width
and breadth are chosen equally such that their product is
proportional to the clone rate) as well as onto height and color
range (obviously, height is never visible in the orthographic
projection). That is, the higher a file’s clone rate is, the larger
(in all three dimensions) and more deeply red-colored its block
gets.

Mapping the clone rate equally to the size and color of
a block is due to the circumstance that in the orthographic
environment the height of a particular block is not perceivable,
therefore being at a disadvantage if a second clone-related
metric is expressed using the height. Moreover, the same
information can be viewed from all angles, no matter if one
looks from the top or walks between the buildings in the
EvoStreets. This redundant mapping ensures that exactly the
same information is available in all three environments at all
times. In other words, none of the environment neither gave an
advantage nor created extra noise, which could have confused
participants.

E. Tasks

In the following, we will describe each task in more detail.
The three tasks were derived from a list of user goals com-
monly associated with cloning as collected by Basit et al. [52].
The need for inspecting and comparing clones in maintenance
tasks of systems with clones is very common among these
goals [52]. Yet, the fact that clone information is shown in
EvoStreets is not of utmost importance—the tasks can be
generalized to all kinds of problems in which hierarchical
graphs with numerical attributes are to be investigated.



Task 1: In the first task, the participants had to determine
which of two systems contains more cloned fragments shared
among different files. For that, we placed two different systems
side-by-side in the same visualization, both of which contained
clones but are not cloned with each other. The systems to be
compared should be of similar and sufficient size and have
similar cloning between files so that the task does not get
trivial. We found the systems Jillion and JRuby fitting these
requirements, denoted as (A) and (B) in Figure 4a. That is, the
participants had to estimate and compare the number of non-
recursive edges in both systems. This is particularly difficult in
the orthographic environment, which does not support viewing
overlapping edges from all three-dimensional perspectives.

Task 2: In the second task, the aim was to identify the
two subsystems of a system that are mutually cloned the
most, again by counting edges. For that, we subdivided a
system into distinct subsystems of similar sizes using colored
rectangles to emphasize each subsystem. The human visual
perception cannot process too many colors at the same time,
thus, a visualizer must often reuse the same color. As a realistic
visual difficulty, we colored two of the subsystem in the same
color. However, each subsystem was clearly identifiable by its
rectangular shape and the similarly-colored subsystems were
placed remote from each other. We used Jillion for this task.
The resultant EvoStreets are shown in Figure 4b.

Task 3: In the final task, the participants had to locate the
subsystem that accommodates the majority of the source files
containing clones, by comparing the number of red-colored
blocks. We choose Java Spring Boot as a good candidate. The
corresponding EvoStreet is shown in Figure 4c. Similar to
the second task, the system was subdivided into subsystems
depicted by distinct subsystems.

In the further course we will speak of Tasks 1 and 2 as
edge-related, while Task 3 is node-related.

IV. RESULTS

For each of the three tasks described in Section III, we
measured the time required to find an answer as well as its
correctness. Furthermore, we gathered the trajectories of the
participants during task completion. At the end of all tasks,
each participant had the opportunity to rate the usefulness of
each environment for solving the corresponding task. In the
following, we present and discuss the results with respect to
time, correctness, perceived usefulness, and trajectories.

A. Time (H1.T and H2.T)

Table II shows the minimum, maximum, mean, and median
times that were required to find an answer for each task and
environment. According to the mean times, one might suspect
noticeable deviations in the reddish emphasized values. Yet,
the median times show no peculiarities. As depicted by the
boxplot in Figure 5, the differences between mean and median
are due to several outliers: two outliers in Task 1/VR, one
outlier in Task 2/2.5D, and two outliers in Task 3/VR.

The larger one of the two outliers in Task 1/VR as well
as the outliers in Task 2/2.5D and Task 3/2D come from the

TABLE II: Time for task solving [in secs]
Task 1 2 3
Environment 2D 2.5D VR 2D 2.5D VR 2D 2.5D VR

min 20 69 56 51 32 56 69 32 54
max 331 205 953 152 335 208 304 381 362

mean 155.6 115.5 234.4 92.0 136.3 109.6 133.3 138.5 160.8
median 115.0 107.0 129.5 89.0 119.5 105.0 107.0 111.0 124.0

same participant who, at that time, had any experience with
neither software visualization nor VR. Whether the participant
was riveted by the visualization, leading to an unusually high
processing time or any other individual aspect is the cause,
we cannot tell.

As can be seen, the participants, on average, were fastest
in Task 2 and Task 3 when using the 2D environment,
underpinning our hypothesis H1.T (the time required to find an
answer in EvoStreets using 2D versus 2.5D and VR). Yet, 2.5D
outperformed the other environments in Task 1 (depicted by
the green-colored values). In order to validate the differences
in H1.T , we ran the non-parameterized Kruskal-Wallis test on
the median times of each task, comparing the groups 2D, 2.5D,
and VR, respectively. Based on our results (with p-values for
the null hypotheses as follows: Task 1: 0.7, Task 2: 0.3, and
Task 3: 0.9), there is no significant difference among the three
environments for all tasks; thus, we must reject H1.T.

In order to exclude learning effects, we examined the
median times for each of the six environment permutations
but neither found any statistically significant difference. So the
order of the environments usage seems not to have any learn-
ing effect. Likewise, we did not find significant differences
regarding the median times between the 17 students of our
VR project and the remaining participants. Even though these
17 students had practical experience in EvoStreets and could
have presented a potential bias, we can now safely exclude
this aspect.

To validate hypothesis H2.T , that is, there is a significant
difference regarding the time required to find an answer in
2.5D and VR, we ran the non-parameterized Mann-Whitney-
Wilcoxon test. In contrast to our expectations, we could

1 2 3
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Fig. 5: Time required to find an answer of each task and
environment.



not find a statistically significant difference (p-values are as
follows: Task 1: 0.5, Task 2: 0.6, Task 3: 0.7). Thus, we must
reject H2.T .

B. Correctness (H1.C and H2.C)
Table III shows the number of correct and incorrect answers

for each task and environment. The percentages of correct
answers in Task 1 (depicted by the last row of the table) are
relatively similar. In contrast, there are noticeable differences
in Task 2 and Task 3. Using 2D and 2.5D, almost all par-
ticipants solved Task 2 correctly. On the other hand, in VR
only six out of eleven participants found the correct pair of
subsystems.

TABLE III: Number of correct and incorrect answers of each
task and environment (the groups are not of equal size).

Task 1 2 3
Environment 2D 2.5D VR 2D 2.5D VR 2D 2.5D VR

correct c 8 7 7 10 11 6 5 1 3
incorrect i 3 4 5 1 1 5 7 10 8
total c+ i 11 11 12 11 12 11 12 11 11

c/(c+i) 0.72 0.63 0.58 0.90 0.91 0.54 0.41 0.09 0.27

Hypothesis H1.C relates explicitly only to edge-related tasks
(see Section III-B). In both Task 1 and Task 2, participants had
to look out for edges (but not in Task 3). The imbalance of
the results of these two tasks regarding the VR environment
may suggest that Task 2, although being similar to Task 1, has
a specific feature which puts VR at a disadvantage compared
to 2D and 2.5D. For Task 1, two given systems had to be
compared, whereas Task 2 required to compare 15 different
pairs of subsystems. Whether that may serve as a hint, we
can only speculate. At any rate, in both tasks, VR has
yielded the worst results. Using Fisher’s test, we checked the
difference in correctness pairwise. The resulting p-values did
not reach a sufficient significance level for rejecting the null
hypothesis (T1: p2D/2.5D: 1.0 / p2D/VR: 0.67, T2: p2D/2.5D: 1.0
/ p2D/VR: 0.15), so we must reject hypothesis H1.C, which
claims that, regarding edge-related tasks, there are differently
many correct answers in EvoStreets using 2.5D or VR versus
using 2D.

Unlike Task 1 and Task 2, Task 3 focuses on comparing red-
colored blocks rather than edges. Thus, the results of Task 3
in Table III may be an indication that comparing blocks in
2.5D is more error prone than in 2D or VR. Even more to our
surprise, 2D yielded the best rate of correctness for Task 3
although we assumed that occlusion of blocks through edges
may make it harder to correctly compare the number of blocks.
However, the differences are neither statistically significant:
(Task 3: p2D/2.5D: 0.16 / p2D/VR: 0.67), hence, we cannot assume
that 2D is truly better than either 2.5D or VR.

As already for the median times, we compared the answers
of the 17 students of the VR project with the answers of
the remaining participants regarding correctness to exclude a
potential bias. Again we did not find any significant difference,
hence, can exclude the bias.

Similar to H1.C, we ran Fisher’s exact test to validate
hypothesis H2.C, which claims that there is a significant

difference regarding the correctness of answers given in 2.5D
and VR. No statistically significant difference could be found,
though (p-values are as follows: Task 1: 1.0, Task 2: 0.07,
Task 3: 0.6). Accordingly, we cannot accept H2.C.

C. Ratings

At the end of all tasks, each participant had the opportunity
to rate the usefulness of each environment from 1 to 6, with 1
being the best rate and 6 the worst. Figure 6 shows the accu-
mulated results. The averages were as follows: 2D: 3, 2.5D: 2,
VR: 2. Overall, the two three-dimensional environments were
rated better than 2D. Interestingly, the subjective assessment
is not well reflected in the objective measures on timing and
correctness. The participants may like 3D visualization, but
they do not seem to offer any real advantage for task solving
over 2D.

2D 2.5D VR
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Fig. 6: Rating of each task and environment.

D. Trajectories

While the participants have solved the tasks in 2.5D and
VR, we gathered their position data within the map to find
differences in movement patterns. Figure 7 shows the resulting
trajectories for each of the three tasks in the side view as
well as in the top view. The yellow-colored paths depict
all position data of the 2.5D environment whereas the cyan-
colored paths depict all position data of the VR environment. A
visual pre-analysis suggests that the movement patterns differ.
That is, movements in the 2.5D environment seem to be more
extensive compared to movements in the VR environment.
To express the visual differences in numbers, we calculated
two metrics for each set of position data (that is, the position
data of a participant): 1) Path Length, which accumulates the
distances between each two consecutive movement points and
2) Average Speed, which puts the length of a path in relation
to the time that was required to walk this path. Furthermore,
we determined the unweighted Range of Movement metric for
each task and environment by first calculating the centroid
(unweighted mean of the recorded movement point locations)
and then calculating the maximum of the distances of all
movement points to its centroid. This number gives an idea
on the “volume” space of trajectories.



(a) Task 1: side view (b) Task 1: top view

(c) Task 2: side view (d) Task 2: top view

(e) Task 3: side view (f) Task 3: top view

Fig. 7: Trajectories of the 2.5D (yellow) and VR (cyan)
environments.

We found differences in the median values of all three
aspects between 2.5D and VR for almost all tasks. Some
of which were significant (cf. Table IV). We have noticed
this difference in movement patterns as a byproduct of our
experiment. We have not anticipated it, hence, have neither
controlled it or took any measure in advance to find explana-
tions. We plan to run a study in the future to further delve
into this phenomenon, but found it to be interesting enough to
share it already now with other researchers.

TABLE IV: P-values for the Mann-Whitney-Wilcoxon tests of
the three inspected aspects of the trajectories in 2.5D vs. VR.

Task 1 2 3

Path Length 0.30 0.0040 0.10
Average Speed 0.20 0.0010 0.01
Range of Movement 0.09 0.0002 0.04

E. Threats to Validity

This sections discusses potential threats to validity of our
experiment.

Internal validity: To make sure that any observed effect
in our dependent variables can solely be attributed to the
independent variable, we took the following measures. To

counter influences of prior knowledge and experiences of
the participants, we asked each participant to solve tasks in
every environment (orthographic projection, 2.5D, VR) and
otherwise assigned them randomly to one of the six orders of
experimental steps. To minimize sequence effects, for instance,
through learning, we shuffled the tasks and environments into
six different orders. Differences in prior experiences in VR
may influence the participants’ performance. Yet, almost all
participants (28 out of 34) had prior experiences in VR and
all were trained before the experiment in each of the three
different environments. The training sessions did not have any
time limit. The participants were offered all available time
to get to know the environment and to feel comfortable with
it. Yet, we cannot fully exclude that the “fun factor” of VR,
which may have caused them to spend more time than actually
needed to solve the tasks in VR during the actual experimental
run, in particular, because we told them before each task that
there is no time pressure. They should use as much time as
they feel is needed to find the answer.

To limit the observer-expectancy effect—the form of re-
activity in which a researcher’s cognitive bias causes him
or her to subconsciously influence the participants of an
experiment—we used quantitative measurements of the de-
pendent variables: time and number of correct answers, which
can both be objectively assessed. Yet, there could have been an
subconscious influence during training. The likelihood of the
subject-expectancy effect—a form of reactivity when a partici-
pant expects a given result and therefore unconsciously affects
the outcome—may be higher than the observer-expectancy
effect because 17 participants were students of a VR project
in our group and 5 participants were researchers of our group
(although from working areas different from visualization).
Although we did not tell any participant in advance the goal of
our study, we cannot fully exclude that the subject-expectancy
effect may have taken place.

Because we do not know the distribution of the population
from which we drew our participants and because the number
of participants would not justify that the central limit theorem
applies, we used non-parameterized statistical tests. Because
outliers have a larger influence in small samples, we used
statistical tests that treat the quantitative measures only as
ordinal data. The downside of these ordinal tests is that they do
not take into account the actual time differences. They only
rank the times. We also ran the parameterized and interval-
scaled ANOVA and t-tests, even though their preconditions
cannot be assumed, to get an estimate as to whether the actual
differences rather than just the rank of the time give a different
picture. Yet, even then no significant differences could be
found.

External validity: Here we discuss how far our results
are generalizable, given that the experiment was conducted
on a sample of the relevant population and in a controlled
environment.

We used cloning information for three Java systems to
produce the visualization. Other types of relations, metrics, and
hierarchies in software may yield other types of EvoStreets.



In particular, the size of the systems and the number of edges
is expected to have an influence. The sizes of the programs
visualized as EvoStreets in our experiment were in the range
from about 75 KLOC to 227 KLOC. Smaller and larger
programs may lead to other results.

The majority of participants had prior experience in VR.
That is, we cannot claim that the results of our study can
be generalized to developers without prior VR experience.
Yet, the required level of experience can be gathered quickly
by some training. One needs to always learn to “read” a
visualization to make optimal use of it. Controlled experi-
ments are generally somewhat artificial. Only through long-
term studies in the field—thus within software development
organizations visualizing their own software, a visualization
as well as any other software engineering tool or method can
be truly assessed.

We used convenience sampling to recruit our participants
because it is generally very difficult to employ any other
more reliable sampling strategies due to lack of participants
and prior knowledge on characteristics of the population.
Convenience sampling, however, bears the risk that the sample
does not reflect the population well.

Construct validity: Construct validity is the degree to
which a test measures what it claims, or purports, to be mea-
suring [53]. In our experiment, construct validity is reached
when the experimental treatment reflects the construct of cause
of our theoretical model and when the outcome reflects the
effect truly. We claim that the use of EvoStreets for cloning
as well as the given tasks are realistic treatments and time
and correctness are appropriate measures of the effect. We
derived those tasks from a taxonomy of clone-related goals and
information needs of the literature [52]. Time and correctness
are meaningful measures of performance.

V. CONCLUSION

The EvoStreets visualization is a well suited approach to
visualize the hierarchical structure of a software system and
to depict hotspots therein. Thanks to recent technological
improvements, EvoStreets can now be explored in virtual
reality. Yet, there is little research on comparing EvoStreets
using virtual reality systems with EvoStreets using conven-
tional environments. To gain further insights, we conducted a
controlled experiment in which 34 participants, by means of
the EvoStreets visualization technique, had to analyze cloning
in existing Java systems. The experiment was subdivided into
three distinct tasks, each visualizing the subject EvoStreets
in one of three environments: 1) 2D orthographic projection
with keyboard and mouse, 2) 2.5D projection with keyboard
and mouse, and 3) virtual reality with head-mounted displays
and hand-held controllers. The tasks were designed such that
the participants had to visually examine and compare nodes
and edges, where nodes represented files and edges related
files sharing cloned code.

In order to identify differences between the three environ-
ments, we measured the time required to find an answer as well
as its correctness for each task and environment. According

to our results, we could not find statistically significant differ-
ences among the three different environments, though, there
seems to be a trend that comparing blocks in 2.5D is more
error prone than in 2D and VR. Among our 34 participants
were 17 advanced undergraduate students who already have
had experience with EvoStreets visualized in virtual reality.
Comparing these students with the remaining participants, we
neither could find differences regarding time and correctness.
Based on our findings, we conclude that it cannot be assumed
that 1) the 2D environment takes less time to find an answer, 2)
the 2.5D and VR environments provide better results regarding
the correctness of tasks compared to the 2D environment,
and 3) the performance regarding time and correctness differs
between the 2.5D and VR environments. Furthermore, each
participant had the opportunity to rate each environment as to
its usefulness to solve a certain task. On average, VR and 2.5D
were rated similarly and better than 2D. Yet, the subjective
assessment did not correlate with the actual task-performance
measures.

To find differences in the navigation of keyboard and mouse
versus controllers and head turning, we recorded the trajecto-
ries of each participant in the 2.5D and VR environments. We
found that human beholders in VR tend to move to a lesser
extent compared to the 2.5D environment. In future work,
we want to continue analyzing the navigation paths of VR
and 2.5D. That is, we want to study whether the differences
between navigation result from using hand-held controllers or
head-mounted displays or any other factor.

Acknowledgement: We want to thank all participants of
our experiment and two of our research group members for
their assistance in our study.

REFERENCES

[1] F. Steinbrückner, “Consistent software cities: supporting comprehension
of evolving software systems,” Ph.D. dissertation, Brandenburgische
Technische Universität Cottbus, 06 2013. [Online]. Available: https:
//opus4.kobv.de/opus4-btu/frontdoor/index/index/docId/1681

[2] R. Wettel and M. Lanza, “Visualizing software systems as cities,” in
2007 4th IEEE International Workshop on Visualizing Software for
Understanding and Analysis, June 2007, pp. 92–99.

[3] ——, “Codecity: 3d visualization of large-scale software,” in Companion
of the 30th International Conference on Software Engineering, ser.
ICSE Companion ’08. New York, NY, USA: ACM, 2008, pp. 921–922.
[Online]. Available: http://doi.acm.org/10.1145/1370175.1370188

[4] ——, “Visual exploration of large-scale system evolution,” in 2008 15th
Working Conference on Reverse Engineering, Oct 2008, pp. 219–228.

[5] D. Holten, “Hierarchical edge bundles: Visualization of adjacency re-
lations in hierarchical data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 741–748, Sep. 2006.

[6] B. Johnson and B. Shneiderman, “Tree-maps: A space-filling
approach to the visualization of hierarchical information structures,”
in Proceedings of the Conference on Visualization. IEEE Computer
Society Press, 1991, pp. 284–291. [Online]. Available: http://dl.acm.
org/citation.cfm?id=949607.949654

[7] S. S. Chance, F. Gaunet, A. C. Beall, and J. M. Loomis, “Locomotion
mode affects the updating of objects encountered during travel: The
contribution of vestibular and proprioceptive inputs to path integration,”
Presence: Teleoper. Virtual Environ., vol. 7, no. 2, pp. 168–178, 1998.

[8] J. Vincur, P. Navrat, and I. Polasek, “Vr city: Software analysis in
virtual reality environment,” in 2017 IEEE International Conference on
Software Quality, Reliability and Security Companion (QRS-C), July
2017, pp. 509–516.
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