Movement Patterns and Trajectories in
Three-Dimensional Software Visualization

Marcel Steinbeck
University of Bremen, Germany
marcel @informatik.uni-bremen.de

Abstract—Software visualization is a growing field of research,
in which developers are assisted in understanding and analyzing
complex applications by mapping different aspects of a software
system onto visual attributes. Under the assumption that virtual
reality, due to the higher degree of immersion, may enhance user
experience, researchers have begun to port existing visualization
techniques to this environment. Oftentimes, layout algorithms
and user interaction methods are more or less transferred
one-to-one, though little is known about the effect of virtual
reality in visual analytics and program comprehension. Moreover,
little research on the behavior of developers in different three-
dimensional visualization environments has been done yet.

This paper extends the results of a previous controlled ex-
periment, in which the EvoStreets visualization technique was
compared in different two- and three-dimensional environments.
In the original experiment, we could not find evidence that any
of the environments, namely, 2D, 2.5D, and virtual reality, effects
the time required to find an answer or the correctness of the given
answer. However, we found indications that movement patterns
differ between the 2.5D and the virtual reality environments. For
this paper, we analyzed and refined the movement trajectories
that have been recorded in the previous experiment. We found
significant differences for some of the tasks that had to be solved
by the participants. In particular, we found evidence that the
path length, average speed, and occupied volume differ. Though
we could find significant correlations between these metrics and
correctness, we found indications that there is a correlation with
time, which, in turn, differs significantly between the 2.5D and
the VR environments for many tasks. These findings may have
implications on the design of visualizations, interactions, and
recommendation systems for these different environments.

I. INTRODUCTION

In the last decades, tools to analyze software systems regard-
ing certain aspects, for instance, software clones, have been
developed with great success. However, managing analysis
results is still a challenging task due to the sheer amount of
data. Hence, different visualization techniques, which are gen-
erally capable to synthesize a large amount of data, have been
developed that are supposed to assist in assessing findings by
aggregating results and, exploiting the human visual percep-
tion, simplifying the discovery of patterns in visual attributes.
One of these visualizations is known as EvoStreets, a technique
proposed by Steinbriickner and Lewerentz [1], [2]. Based
on the software-as-a-city metaphor, originally introduced as
CodeCity by Wettel and Lanza [3], [4], [5], EvoStreets are well
suited to depict the evolution of arbitrary software elements
(e.g. source files, classes, and methods). The hierarchical
structure of these elements is depicted with nested streets,

Rainer Koschke
University of Bremen, Germany
koschke @uni-bremen.de

Marc O. Riidel
University of Bremen, Germany
mor @uni-bremen.de

Fig. 1: Movement trajectories (and the convex hull spanned
by the trajectories) of participants exploring software clones
in EvoStreets.

branching at each level change in the hierarchy. Leaves of
the hierarchy, in turn, are shown as three-dimensional blocks,
using the width, height, and breadth, as well as a color gradient
as visual attributes to emphasize relevant metrics, such as
lines of code, cyclomatic complexity, and change frequency.
In comparison to the CodeCity approach, which visualizes
the hierarchy by recursively subdividing a convex shape into
subareas, the layout generated by EvoStreets is more stable to
changes (with respect to the size and location of the leaves),
allowing to track modifications more easily.

First implementations of the CodeCity and EvoStreets
visualizations used two- (known as 2D visualization) and
three-dimensional (known as 2.5D visualization) rendering
on regular two-dimensional displays. Lately, to enhance user
experience and to take advantage of the better immersion,
immersive virtual reality systems (IVRS) with head-mounted
displays (HMD) and hand-held controllers are used to bring
the city metaphor into the virtual reality (VR). Studies outside
of software engineering have shown that HMDs may have
a positive effect on the orientation in three-dimensional VR
environments [6]. Researchers in software visualization have
started to investigate whether these advantages observed in
other fields also hold true in software engineering. In a
previous controlled experiment, we compared the EvoStreets
visualization technique in three different environments (2D,
2.5D, and VR) by forming three different tasks that had



to be solved by 34 participants—each task in one of these
environments [7]. Contrary to the results by Chance etal.
[6] outside of software engineering, our experiment did not
find evidence that any of the environments effect the time
to complete a task or the correctness of the given answers.
However, indications had been found that movement patterns
in the 2.5D and VR environments differ. These preliminary
indications, however, were not analyzed in more depth.

Contributions. In this paper we examine the results of our
previous experiment in more details with respect to differences
in how the participants have moved within the city while
solving a particular task.

In 2.5D, EvoStreets are rendered on a regular two-
dimensional display, while in VR a head-mounted display
presents a city in a stereoscopic manner. Furthermore, naviga-
tion differs in those environments. That is, in 2.5D a keyboard
and mouse is used to move within EvoStreets whereas in VR
participants can rotate their heads and bodies and use hand-
held controllers to adjust the view. These two aspects may
effect how humans move in EvoStreets, which leads us to our
first research question.

RQ1 Do the two different environments 2.5D and VR effect
movement patterns in EvoStreets?

If there are any effects (and we found initial evidence for
that [7]), the next question becomes whether these differences
have any impact on the correctness of the answers determined
by human beholders. Our previous controlled experiment
consisted of three different tasks, in which answers were either
correct or wrong.

RQ2 Is there a correlation between movement patterns and
correctness?

Along with correctness, the time required to find an answer
for each task and environment has been recorded while running
the experiment. Following the idea of RQ2, the question
arises whether differences in movement patterns effect the time
required to complete a task.

RQ3 Is there a correlation between movement patterns and
the time required to complete a task?

The remainder of this paper is organized as follows. Sec-
tion II presents related research. The design of the original ex-
periment as well as our operational hypotheses are described in
Section III. Results are presented and discussed in Section IV.
Section V concludes.

II. RELATED WORKS

The focus of our research presented in this paper is on
whether different kinds of visualization environments, namely,
2D and 2.5D desktop computers with monitor, keyboard, and
mouse and virtual reality with head-mounted displays and
hand-held computers, effect how humans move in EvoStreets.
Such differences may be relevant, for instance, for recom-
mendation systems tracking the movements of humans in the
virtual worlds in order to learn from these and to make rec-
ommendations for the currently moving humans or for others
who may follow them. If there are differences in the movement

patterns, adjustments needs to be made in those recommender
systems depending upon the type of environments developers
move to comprehend a program.

In this section, we will describe related research on software
visualization based on the city metaphor, empirical findings on
differences between 2D and 2.5D desktop environments and
virtual reality, and recommender systems.

A. Software Visualization Using the City Metaphor

Static as well as dynamic structures of software can be
modeled by various kinds of graphs. We can use graphs,
for instance, for the system decomposition along with de-
pendencies, the class inheritance hierarchy, or for the static
or dynamic calls between methods. These graphs are often
the foundation for visualization [8]. There are many kinds
of visualization for graphs, e.g., node-link diagrams (also
known as network graphs), matrices [9], wheel views [10],
or treemaps [11]. In this section, we will summarize the
visualizations that come closest to EvoStreets, which is the
one for which we analyzed experimental data. For a broader
overview of software visualization, we refer the reader to more
comprehensive surveys [12], [13], [14], [15], [8], [16], [17],
[18], [19],

EvoStreets build on the idea of CodeCities which in turn
are based on treemaps. A treemap presents hierarchical data
(a tree) as a group of nested rectangles in 2D [11]. A rectangle
captures each branch of the tree, which further contains
smaller rectangles to denote sub-branches or leaves. The area
size of an innermost rectangle is a visual encoding of a given
property of the leaf element and chosen proportionally to
that property. Often the color or texture of a rectangle are
additional visual encodings of other properties. How rectangles
are divided and ordered is determined by a tiling algorithm.
There are different variants of these. One of the earliest and
simplest ones is slice-and-dice tiling, which alternates the
orientation of rectangles at each level of the hierarchy (ver-
tically vs. horizontally). The popular squarified tiling instead
attempts to keep each rectangle as square as possible, which is
advantageous because humans have difficulties in comparing
areas with different aspect ratios.

If one extends treemaps to the third dimension for yet
another property to depict, the rectangles become blocks.
Three-dimensional treemaps are often perceived as modern
cities such as Manhattan. This impression is eponymous for
the notion of CodeCity, originally introduced by Wettel and
Lanza [3], [4], [5]. The tiling algorithms of treemaps and
CodeCities make optimal use of the available screen estate,
which is advantageous for large software systems. Yet, if not
only a single version of a software but a sequence of multiple
versions of an evolving program is to be visualized, the
layout of treemaps and CodeCities is not flexible enough for
accommodating changes in terms of new or deleted rectangles
as well as the size of the rectangles. Their layout can change
drastically from one version to another such that the mental
map of a human beholder deteriorates [20]—although it must
be mentioned that researchers have started to work on that



problem [21]. Another difficulty is that their compact layout
offers very little distinct patterns that would help humans in
recollecting visited places and their orientation.

Steinbriickner and Lewerentz [1], [2] have introduced
EvoStreets as an alternative to CodeCities. The hierarchy is
represented by road junctions rather than subdivided areas.
Each level of the hierarchy is visualized by an individual line,
representing a street within the city, whose width represents
the nesting level: the lower the level, the thinner the street.
Leaves of the hierarchy are represented as three-dimensional
blocks as in CodeCities. EvoStreet require more space due
their orthogonal street layout which causes large areas of
empty space. Yet, that space allows them to grow or shrink
to accommodate changes by preserving spatial relations of
existing blocks, which helps in maintaining the mental map
of a beholder.

Dependencies among the code entities depicted in treemaps,
CodeCities, or EvoStreets can be visualized as edges. If edges
are drawn straight, taking the shortest possible path between
two connected elements, they easily create visual clutter by
crossing nodes or other edges. If there are many such edges,
the visualization becomes unreadable. Holten has proposed
hierarchically bundled edges to reduce some of this visual
clutter [10], [22]. Bundling means that edges from and to
similar locations attract each other, analogously to a cable tie.
Hierarchical bundling means that control points are added that
act as the source of attracting forces for edges and the location
of these control points is based on the hierarchical structure of
the nodes. For treemaps, CodeCities, and EvoStreets the x and
y co-ordinates of those control points are chosen as the center
point of the area occupied by all elements of a subtree. In
CodeCities and EvoStreets, which both offer a third dimension,
the z co-ordinate of a control point is chosen proportionally
to the closest common ancestor of the source and target of an
edge: higher-level ancestors are farther away from the ground.

B. Virtual Reality Versus Desktop

3D and VR techniques have been explored for quite some
time in software visualization. Knight and Munro gave an
overview on VR for software visualization as early as 2000
[23]. Since then various other researchers have used VR and
3D for software visualization for static information [24], [25],
[26], [27], [28], [29], [30], [31] or for dynamic data such as
resource bottlenecks or memory leaks [32], [33], [34]. Elliott
etal. discuss the affordances and challenges of VR in software
engineering in general and present ideas on how it can be
used for code reviews [35]. There is already also a great
body of knowledge on VR and 3D visualization outside of
computer science [36], [37], [38]. Studies in other disciplines
have shown that head-mounted displays may enhance the
orientation in three-dimensional environments as they allow
to rotate and move more naturally as opposed to traditional
approaches [6]. Sousa Santos etal., on the other hand, give
an overview on virtual environments, discuss several papers
that compared VR to desktop environments, and report on
an experiment they conducted themselves [39]. In their ex-

periment on navigation in a virtual maze, they found that—
although users were generally satisfied with the VR system
and found the VR interaction intuitive and natural—most
performed actually better in the desktop environment. Ruddle
etal. investigated the navigation in computer-simulated worlds
with HMDs and with traditional desktop environments [40],
[41]. In one of their experiments, participants had to navigate
within large virtual buildings, consisting of one floor with nine
rooms and one corridor [40]. The experiment was a repeated
round tour through several rooms. In a second experiment,
they looked into proprioceptive feedback and its influence on
navigation within a virtual maze [41]. In the first experiment,
they found that the HMD had an advantage to the speed of
the participants [40], in contrast to their later experiment [41]
and to Sousa Santos etal.’s experiment [39], which both took
place in a maze. What exactly caused these conflicting results
is a subject of further research.

The fact that working in different environments can cause
different loads on human memory (and thus on a human’s
psyche) has long been known [42], [43] and is now referred
to as cognitive load [44], [45], [46], [47], [48], [49]. Van
der Land etal. [50] studied how 3D virtual environments
affect group decision making in tasks with a strong visual
component and found that the interaction and negotiation
processes required for reaching a shared understanding in
VR increase cognitive load and even make group processes
inefficient. Gerry etal. [51] developed a VR system that keeps
the cognitive load of its user in focus and tries to extend
the performance during visual search tasks by adapting the
visualizations.

Software-engineering researchers have already started to vi-
sualize EvoStreets in VR [52], [53], [7] to investigate whether
that assists in solving software engineering tasks by offering
more intuitive interactions. In a preliminary experiment, we
investigated how successfully humans orient themselves in
EvoStreets in 2.5D and VR, respectively [53]. The participants
had to solve a homing task, that is, find their way back to
the place where they started. Our primary hypothesis was
that the HMD environment would make it easier to gain a
spatial orientation inside of EvoStreets in comparison to a 2.5D
environment but we found no statistically significant evidence
for it in our controlled experiment with 20 participants. In a
follow-up experiment, we investigated whether solving partic-
ular software-engineering tasks related to understand cloning
in software is effected by 2D, 2.5D, and VR environments [7].
The details of that experiment will be presented in Section III.
Similarly to Ruddle et al. [41] and to Sousa Santos et al. [39]
for navigation tasks in computer-simulated mazes or interiors
of buildings, we found no significant differences in solving
tasks that required counting nodes and edges (clones) among
2D, 3D, and VR visualization for EvoStreets [7]. Yet, we found
a significant difference in the way how participants moved
between 3D desktop and VR environments. These indications
form the starting point of our analysis described in Sections III
and IV.



C. Recommendation Systems in Software Engineering

In the long run, we want to develop recommendation
systems for developers moving in EvoStreets based on their
previous history or of movements of other developers. Our
current research presented in this paper is a foundational
stepping stone towards this goal. In this section, we summarize
related work on recommendation systems.

The development of ever faster and more powerful hardware
and software has allowed the collection of data about the
software and its development process. This essentially includes
data on the structure and dynamics of the software and
its parts, but also, for example, on the project team, the
involvement of the team members and project progress. These
data can be used for control, training, prediction, or auxiliary
purposes [54]

The sheer amount of data, in turn, requires tools that
make the desired informations in the data recognizable and
understandable. Recommendation systems are tools that dis-
cover patterns in the data. They are often used in areas of
analysis and diagnostics in general domains such as medical
and vehicle diagnostics, or in commercial online shops where
human decision-making is still an indispensable part of the
process but should be supported by pre-filtering [55]. They
can as well be used for software engineering tasks.

Developers leave their data traces in version control sys-
tems, issue trackers, or electronic conversations. Integrated
development environments can be instrumented to collect
additional data. The data can be leveraged by recommenda-
tion systems—if ethically used—to help them solving their
complex tasks by learning from previous task solving by
themselves or by others [56].

The data sources that can be of interest during the software
development process are many and varied. Robillard and
Walker [54] list seven typical additional data sources besides
the actual, static source code, such as the project history,
communication archives, dependent APIs, development envi-
ronment, interaction traces, execution traces, and the web.

Many recommender systems are already implemented in
tools. However, less attention in research has been paid to hu-
man aspects so far. The reason for this is probably the high cost
that such user studies entail. As a result, little is known about
the actual practical benefits of the recommendation systems
[54]. Another reason is likely that development of software is
much more complex than most other tasks currently supported
by recommendation systems outside of software engineering,
for instance, buying decisions in online shops. This makes
it hard both to find a good solution algorithmically and to
determine the right context first. Without the right context, it
is not easy to make relevant recommendations.

D. Comparing EvoStreets in Different Environments

Merino compared CodeCities in 2.5D and augmented reality
(AR) with respect to navigation, selection, occlusion, and text
readability [57]. They found in a controlled experiment with
nine participants and a subsequent user study that AR facil-
itates navigation and reduces occlusion, while performance

in program-comprehension tasks is adequate, and developers
obtain an outstanding experience. They identified selection and
text readability as open issues.

This paper is based on the results of our previous controlled
experiment [7], in which 34 participants, by means of the
EvoStreets visualization technique, had to analyze existing
Java systems regarding software clones. The subject systems
are listed in Table I.

TABLE I: Java systems for the experiment.

Name Lines of Code  Files  Clones
Jillion 75,520 929 66
JRuby 227,145 1360 110
Spring Boot 181,795 3042 228

The participants were recruited through convenience sam-
pling. About half the participants (17) were undergraduate
students attending a VR project on EvoStreets. The others were
(graduate and advanced undergraduate) students of a software
engineering course taught by our research group (5), regular
students (3), researchers (7), and professional developers (2).
The main objective of the experiment was to study the effect of
three different environments, namely, orthographic projection
with keyboard and mouse (2D), 2.5D projection with keyboard
and mouse (2.5D), and virtual reality with head-mounted
display and hand-held controllers (VR) on the time required
to complete a task (no time limit was imposed to complete
a task) and the correctness of the given answer. Though we
could not find evidence that any of the environments has a
significant effect, we found indications that movement patterns
differ between the 2.5D and VR environments.

The three different tasks (depicted in Figure 2) were derived
from a typical visual-analytics context. Each participant had
to solve each task in one of the subject environments. To
counter learning effects, the environments were presented
to the participants in balanced latin square order. Before
solving a task in a particular environment, the participant had
the opportunity to learn the mechanics of the corresponding
environment in a tutorial. Other details follow in the next
section.

III. EXPERIMENTAL SETUP AND HYPOTHESES

As stated in Section II-D, the results of this paper are based
on a previously conducted controlled experiment [7]. In the
following, we first briefly describe the setup of this experiment.
Then, we present our operational hypotheses which were
derived from our research questions presented in Section I.

A. Technical Environments

The original experiment focused on the comparison of the
three different environments 2D, 2.5D, and VR regarding
their effects on visual clone analysis in EvoStreets. The main
objective of this paper is to study the effect of the 2.5D and
VR environments on the movement patterns of the participants.
We focus on the three-dimensional environments only, because
2D lacks one dimension and is, hence, difficult to compare to



9fe. ¥

et W,

A e % se "ﬂ/‘ ) i
e L ohay / )
“3 A .

(a) Task 1 (count connections in different sys-
tems): Decide for the two systems A and B
which one contains more fragments cloned in
other source files.

(b) Task 2 (count connection in subsystems):
Decide for the six subsystems which pair of
subsystems shares the most connections.

(c) Task 3 (count blocks in subsystems): Decide
for the five subsystems which contains the most
source files with clones (red colored blocks).

Fig. 2: The three tasks of the original experiment. S marks the starting point.

the other two environments with more degrees of freedom to

move.

2.5D environment (2.5D) In this environment, the three-
dimensional model of an EvoStreets is rendered on a
regular two-dimensional display. Using a keyboard and
mouse, the participants were able to move within the
EvoStreets and adjust the view as desired.

VR environment (VR) This environment uses the same vi-
sual attributes as the 2.5D environment, but renders the
scene on a stereoscopic head-mounted display (HTC
Vive). Using the full-room tracking mode, the participants
were able to move in an area of around 2.5 x 2.5 meter.
Along with the HMD, hand-held controllers of the HTC
Vive could be used by the participants to navigate through
the city.

B. Visualized Data

The shown data were Java projects where files are depicted
as blocks and the streets represent the directory hierarchy. The
height, width, breadth, and red color gradient of the buildings
are a visual encoding of the clone rate of a file. The clone rate
is the fraction of tokens contained in a clone out of all tokens
of a file, no matter whether the tokens were clone internally
or externally. All these visual attributes show the very same
attribute so that the same information can be viewed from
all angles within EvoStreets. Undirected edges connect files
sharing cloned code.

C. Tasks

The tasks were designed based on three main user goals
from Basit etal. [58], who list common tasks in the area of
clone detection. Clone detection itself is a common task in
analyzing and comprehending software. The tasks, which we
introduce again in the following, are also concretizations of
general visual graph analyzing and comprehension tasks.

Task 1 (Figure 2a): In the first task, the participants had to
count and compare the number of non-recursive connections
in two independent systems A and B (A and B where totally
different projects). From the participants’ point of view, this
task consists of (a) counting connections between red colored
blocks while (in a three-dimensional space) remembering
which connections have already been analyzed, (b) remember-

ing the result for each system, and (c) deciding which contains
more connections.

Task 2 (Figure 2b): In the second task, the participants had
to count and compare the connections between six different
subsystems of the same system (the subsystems were depicted
with colored underground areas). Similar to task 1, this task
consists of (a) counting the number of connections between red
colored blocks located in different subsystems, (b) remember-
ing in three-dimensional space which connections have already
been counted, and (c) deciding which two areas share the most
connections.

Task 3 (Figure 2c¢): In the final task, the participants had
to determine which of the five presented subsystems (again
using colored underground areas to depict each subsystem)
contains the majority of the red colored blocks. This task
is characterized by the following aspects: (a) counting the
number of red colored blocks in each designated subsystem
while (b) remembering in a three-dimensional space which
blocks have already been analyzed, and (c) deciding which
area contains the most red colored elements.

The rate of correctness for the three different tasks obtained
in the previous experiment shows that task 3 is by far the most
difficult task and task 2 is clearly the most simplest one, while
task 1 is in between the two. The vast majority of participants
have not found correct answers for task 3, while most correct
answers were found for task 2.

D. Hypotheses

Our first research question RQ1 refers to whether movement
patterns in EvoStreets differ between the two different environ-
ments 2.5D and VR. As described in Section III-A, EvoStreets
in the 2.5D environment were rendered on a regular two-
dimensional display where movement is provided by means
of a keyboard (W: forward, S: backward, A: left, D: right, Q:
up, E: down) for translation and mouse for rotation. The VR
environment, on one hand, presents the city in a stereoscopic
manner (using a head-mounted display) and allows to turn
the view port by rotating one’s head and body, as well as
to move by using a hand-held controller. These interaction
concepts are slightly different to that effect that movement
in VR is closer to how humans move in natural. On the
other hand, many developers have a background in computer
gaming, thus being familiar with the WASDQE navigation of



the 2.5D environment. In order to compare movement patterns,
we processed the location and trajectory data (that were logged
while running the original experiment) for each participant.
Contrary to common practice, we suspect that these differences
will also affect user behavior in the two environments, and
in particular, movements in the VR environment are likely
to be easier and faster to execute. This would mean that the
participants in the VR environment move much more than in
the 2.5D environment.

From the previous experiment we got access to the move-
ment data of the participants in the investigated environments.
Of course, these movement data (referred to as trajectories
in the following because the participants were able to fly) is
very different for each participant, yet we used them to convey
fundamental differences in the movements.

All participants started at the same location (denoted by S
in Figure 2) for each task, so that the basic movement is struc-
tured as follows: (a) Moving from start position S to a point
with good view, (b) after a while—in the following called the
residence time—moving to another point with good view, (c)
after a residence time moving to another point with good view,
and so on. The length of a trajectory is thus determined by
sum of the distances of all consecutive viewing positions. The
larger a trajectory is, the farther apart the viewing positions are
or the more sight positions a participant took. We suspect that
in the different environments fundamentally different viewing
positions and, thus, distances are necessary. Based on this
assumption we formulate our first hypothesis:

HI1.T The lengths of the trajectories of the 2.5D and VR
environments differ.

The trajectory length is a well suited metric to gain insights
into the distances covered by the participant while exploring
a city, but does not show where the participants have been in
the city. For instance, someone could run back and forth many
times between two points. This person would have covered
a long distance, but would not have seen much of the city.
The extent of the movement is closely related to finding good
viewing positions. Good viewing positions, in turn, depend
on the technical conditions of the display devices. Although
it is difficult to predict what effect the different fields of
view and the different resolutions of the display devices will
have, we suspect that the volumes of the convex hulls of
the trajectories—in the following called the volume—of both
environments will be different. With regard to the volume we
formulate our next hypothesis:

HI1.V The volumes of the 2.5D and VR environments differ.

HI.T and HI1.V explicitly refer only to metrics related to
distances and volumes. Both provide no indication of how
long the subjects stayed at their viewing positions. For this
we set the trajectory length in relation to the required time to
calculate the average speed (movement speed was the same
for both environments, thus average speeds can be compared
with each other). The higher the average speed, the shorter
the time spent at the individual viewing positions. At the
same time this means that the individual visual positions were

not well suited to solve the task. In comparison between the
two environments, this shows differences in the quality of the
display devices that influence the behavior of the subjects.

In the previous experiment, the average speed metric, which
puts the length of a trajectory in relation to the time required
to fly this trajectory, has also been gathered and with regard
to this metric and the assumption of HI.T, we postulate the
following hypothesis:

H1.S The average speed of the 2.5D and VR environments
differ.

In research question RQ2, we focus on correlations between
trajectories, in particular, the metrics introduces in HI.T,
HI.V, and HI.S, and the correctness of the given answers,
that is, the number of correct and incorrect answers. In the
original experiment, we could not find evidence that correct-
ness differs significantly between the environments for any
of the tasks. However, the effectiveness and quality of visual
analytics may be influenced by several, yet unknown factors.
Knowing whether the length of a trajectory, the convex hull
spanned by a trajectory, or the average speed correlates with
correctness might be beneficial for recommendation systems
that are supposed to assist humans in the use of EvoStreets
(or similar visualization techniques). Obvious assumptions are
that participants who fly another route whose movement covers
a larger area or who fly faster also have a higher correctness.
This would allow a prediction of correctness based on one
of the three parameters. That being said, we formulate the
following hypotheses (for the 2.5D and VR environments
respectively):

H2.T There is a correlation between trajectory length and
the correctness of answers.

H2.V There is a correlation between the volume and the
correctness of answers.

H2.S There is a correlation between the average speed and
the correctness of answers.

As with the correctness of the given answers, we could not
find evidence that the time required to find an answer differs
significantly between the environments for any of the tasks.
Nevertheless, similar to research question RQ2, correlations
between the metrics described in HI.T and H1.V and the time
required for task completion (H1.S already implicitly contains
the time, thus a correlation is to be expected) could be a useful
pointer to recommendation systems in software visualization.
There is still the presumption of the hypotheses HI.T and
HI.V that the participants only need a certain amount of time
because they fly very far or cover a particularly large volume.
In order to examine research question RQ3, we postulate
the following hypotheses (for the 2.5D and VR environments
respectively):

H3.T There is a correlation between the length of a trajectory
and the time required for task completion.

H3.V  There is a correlation between the volume and the time
required for task completion.



(a) Volume and Trajectories of Task 1

(b) Volume and Trajectories of Task 2

(c) Volume and Trajectories of Task 3

Fig. 3: The trajectories and accumulated convex hull of each task (cf. Figure 2) and environment. The convex hull of the 2.5D
environment is shown in gold and the VR environment in green.

IV. RESULTS

While running the experiment, we gathered the location data
of each participant and environment, and aggregated these data
to movement trajectories. Further, we calculated the average
speed (which puts the length of a trajectory in relation to
the time required to “fly” along this trajectory) and found
indications that these metrics differ between the 2.5D and VR
environments. In addition to that, we calculated the convex
hulls spanned by the trajectories (as well as their volumes) and
investigated the results relating to trajectories in more detail
for this paper. Pursuing our hypotheses from Section III-D, we
present and discuss our findings below.

A. Trajectory Length (HI.T)

Figure 4 depicts the trajectory lengths for each task and
environment as boxplots. While the median values of the
2.5D and VR environments do not differ much for task 1,
a clear difference is visible for task 2 and 3. However, using
the Mann-Whitney-Wilcoxon test to validate the results, only
task 2 shows significance (p-values are: task 1: 0.3, task 2:
0.004, task 3: 0.1). Accordingly, we can accept HI.T only for
task 2 and must reject it for task 1 and task 3.

Task 1 2 3
40
g
=
5 30
a0
=
3
2. 20 }
P
g 5
Q e
.Q .
= 104 . I
- .
= . .
= | .
0 .
L} L} L} L} L} L}
2.5D VR 2.5D VR 2.5D VR

Fig. 4: Trajectory lengths for all tasks and environments.

Thus, trajectory lengths between the 2.5D and VR environ-
ments are significantly different only for task 2. Because we
consider task 2 as the most simplest task in the experiment and
obtained significant differences for it, one theory to explain

this phenomenon is that VR leads to shorter trajectories only
if a task falls below a certain level of difficulty.

If the trajectory lengths are not significantly different, the
sum of the distances of all consecutive view points must be
similar. Accordingly, participants in task 1 and 3 were able to
cope with similar distances. Whether it is more a matter of
many points of view with a small distance or a few points of
view with a high distance, cannot be determined by the length
of a trajectory.

B. Volume (H1.V)

The trajectory length is well suited to gain insights into
the distance one moves within the EvoStreets, but does not
indicate how much area was actually covered. In order to
get more insights into movement patterns, we first determined
the convex hull of each trajectory and calculated its volume
afterwards (results are shown in Figure 5 and will be discussed
below). To gain an impression of the overall area covered by
the participants of the 2.5D and VR environments respectively,
we also calculated the accumulated convex hull together with
the trajectories of all participants and superimposed it onto the
EvoStreets depicted in Figure 2. Figure 3 shows the results.

A visual pre-analysis leads to the assumption that the
volumes differ significantly (as postulated in hypothesis H1.V).
The actual values of the volumes are depicted by the boxplots
in Figure 5. All three tasks show a noticeable outlier for the
2.5D environment (which are from different participants). To
further investigate whether the volumes differ due to this single
outlier, we reused the Range of Movement metric proposed
in our original experiment. The metric is calculated for each
participant by first determining the centroid (unweighted mean
of the location points of a participant) and then calculating
the maximum of the distances of all location points to its
centroid. Technically, the Range of Movement metric indicates
the maximum radius of the sphere in which a participant has
moved. If the volume of a convex hull results primarily from
single participants, then there must be a strong outlier in the
Range of Movement metric, too. Otherwise, the convex hull is
spanned by several participants.

According to the results in Figure 6, there is no such outlier
for task 1 in the 2.5D environment, thus, we can conclude
that the mean volume of task 1 depicted in Figure 5 does not
result from the corresponding strong outlier alone. For task 2



. 0.6 1 .
4- °
15 4
= 34 0.4
g o
=
) 10 4
. I
E . 0.2 1 o
s | L - =
1] e e, 7]
04 == ° o 0+

25D VR 25D VR 25D VR

Fig. 5: Volume of convex hull.

and task 3, two outliers for the 2.5D environment are present
in Figure 6. However, (1) their deviation from the mean is
not large enough to explain the single outlier in Figure 5 and
(2) a single outlier in the volume of the convex hull cannot
result from a single participant if two or more (relatively small)
outliers are present in the Range of Movement. That being said,
we can assume that the volumes shown in Figure 3 are spanned
by several participants. We further validated the volumes with
the Mann-Whitney-Wilcoxon test. The p-values are as follows:
task 1: 0.07, task 2: 0.0002, task 3: 0.03. According to these
results, we can accept H1.V for task 2 and task 3 if the level
of significance is kept to 0.05. For task 1 the p-value is at
least quite close to the significance threshold.

There may be different reasons why the significance level
was not reached for task 1. On the one hand, task 1 was
always the first task the participants had to solve. Therefore,
learning effects can play a role despite the training level. On
the other hand, we can not rule out that the result would not
be significant by a larger number of participants. Especially
in such borderline cases like this one, just one participant
more or less can of course have an influence. Nevertheless, we
can also ask ourselves whether processing task 1 has special
requirements that were not necessary in tasks 2 and 3.

We assume that the participants try to reach good points of
view as directly as possible. Therefore, the closer the points
of view of a trajectory are to each other, the smaller will
be the volume spanned by this trajectory. The volume of a
trajectory will be considered by us as a simple measure of its
compactness. Based on our results, this means that for task 2
and 3, the compactness of the trajectories in the environments
are clearly differentiated. We attribute this difference to the
characteristics of the output devices, for instance, the field of
view, resolution, moving of the visible by turning the head, or
other aspects. We can safely exclude that the viewport caused
any difference because it was the same in all environments.

C. Average Speed (H1.S)

Figure 7 shows that the average speed in the 2.5D en-
vironment is generally higher than in the VR environment.
An interesting observation is that the VR environment has

3 4 . .
2 ag . $
T

2.5D VR

Range of Movement [km]

2.5D VR 2.5D VR

Fig. 6: The Range of Movement of each participant.

many more outliers in all environments compared to the 2.5D
environment. According to the Mann-Whitney-Wilcoxon test
(p-values are as follows: T1: 0.2, T2: 0.001, T3: 0.01) the
differences are significant for Task 2 and Task 3.

The trajectory length in conjunction with the time gives
indirect information about how long the subjects stayed at
certain points of view. All three tasks could not be solved, if
you stand in only one place and look around—the participants
had to move and, even if there was no time pressure, they will
not delay task resolution consciously. In this respect, the path
length indirectly also provides information about the number
of changes of location, for example, in order to obtain a better
or different view of the scene.

Average Speed [km/s]

T
2.5D VR

Environment
Fig. 7: Average speed.

The higher the speed, the shorter the residence time at
the viewpoints. The residence times in tasks 2 and 3 differ
significantly depending on the environment used. We suspect
that the viewpoints selected by the participants in the two en-
vironments are of fundamentally different quality so that new
ones have to be visited more frequently in one environment.

D. Correlation with Correctness (H2.T, H2.V, and H2.S)

We calculated three point-biserial correlation coefficients
(Pearson, Spearman, and Kendall) for all tasks and envi-
ronments , summarized in Tables II, III, and IV. Pearson’s
cor checks for a linear correlation, while Spearman’s p and
Kendall’s 7 both check for a monotonic correlation only.



Spearman’s p tends to provide higher correlations values than
Kendall’s 7 in general.

To our surprise, we have only one significant moderate
correlation (Pearson) for the trajectory length and correctness
of task 3 in the 2.5D environment (cor: 0.6516, p-value: 0.03),
printed in bold in Table II. Moreover, it must be noted, too, that
the significance test for Pearson’s cor may not be trustworthy
anyhow if the correlated variables are not bivariate normal.
There are four more correlation values for the other two
correlation measures at significance level p = 0.1 in Table II
and three in Table III at least (shown in italic). Among the p-
values, these are the ones that come closest to our significance
level of 0.05. But even for all these cases, the correlation
is only in between 0.4 and 0.5. Overall, there is only one
significant difference with a moderate correlation. Hence, we
fail to reject the null hypotheses for H2.T, H2.V, and H2.S
and cannot claim that any of these hypotheses are true.

If there had been positive correlations between trajectory
length or volume with correctness, there is a chance that a
recommendation systems could detect that a human is poten-
tially trying to give an answer too quickly by having observed
his/her trajectory length or volume so far. Unfortunately, our
data do not indicate that this can be done.

TABLE II: Correlations of trajectory length and correctness.

Task  Env. Pearson Kendall Spearman
p cor P T p P

1 2.5D 0.6 0.1825 0.7 0.097 59 0.8 0.114
VR 0.3 -0.325 0.4 -0.2289 0.4 -0.2693

2 2.5D 0.2 0.3709 0.1 0.4082 0.1 0.4804
VR 0.9 0.03569 1.0 0.0 1.0 0.0

3 2.5D 0.03 0.6516 0.1 0.4264 0.1 0.5
VR 0.2 0.4391 0.2 0.3853 0.2 0.4518

TABLE III: Correlations of volume and correctness.

Task  Env. Pearson Kendall Spearman
p cor p T p P
1 2.5D 0.6 0.225 0.6 0.1571 0.6 -0.024 48
VR 1.0 -0.003142| 0.9 -0.02081 0.9 -0.024 48
2 2.5D 0.2 0.4336 0.1 0.4082 0.1 0.4804
VR 0.9 -0.03917 0.7 -0.1217 0.7 —0.1421
3 2.5D 0.2 0.4091 0.2 0.3411 0.2 0.4
VR 0.1 0.4926 0.2 0.3853 0.2 0.4518

E. Correlation with Time (H3.T, H3.V)

While we could not find evidence that there is a correlation
between correctness and trajectory length, volume, and av-
erage speed, we found several significant moderate to strong
correlations between time and trajectory length, as well as time
and volume. The results for the environments are presented in
Table V and Table VI (significant results at p = 0.04 are
printed in bold). There are significant correlations for VR for
tasks 1 and 3 for all correlation measures. There is a significant
difference for montonic correlation of VR for trajectory length
and time. There are significant differences for 2.5D for task 3
for both trajectory length and volume versus time. In addition,
there is a significant linear correlation of 2.5D for task 2
with regard to trajectory length. All of these correlations are
moderate to strong.

TABLE IV: Correlations of average speed and correctness.

Task  Env. Pearson Kendall Spearman
p cor p T p i
1 2.5D 1.0 0.0 0.7 0.097 59 0.8 0.114
VR 0.6 -0.1546 0.5 -0.1873 0.5 -0.2203
2 2.5D 0.3 0.2982 0.3 0.2598 0.3 0.3057
VR 0.9 -0.0546 0.8 -0.060 86 0.8 -0.07107
3 2.5D 0.5 -0.2095 0.8 -0.08528 0.8 -0.1
VR 1.0 -0.01062 1.0 0.0 1.0 0.0

Task 3 is particularly interesting because there are signifi-
cant correlations by all measures for both 2.5 and VR. It is
also the most difficult task according to its low rate of correct
answers where one would expect that the difficulty mirrors
in longer and more wide-spread travel paths. As a reminder,
task 3 required to count files with clones for seven subsystems.

The overall time to solve a task is the sum of the time
needed to travel and the time needed to look at the data from
a reached viewpoint. The significant correlations for trajectory
length and volume with respect to time show that the time
needed may indeed be at least partially be explained by the
need to travel farther and to cover more wide-spread points of
view. The relevance of this result for a recommendation system
is that traveling takes a significant share of the time needed
to solve a task and means should be provided to shorten that
time so that a beholder can focus on the subtasks that can
less easily be supported automatically. For instance, guidance
could be offered where to look, a history of the travel so far
could be recorded and made accessible, markers could be set as
reminders and to quickly return to previous locations, general
points of interest could be visualized where other people have
spent time for similar tasks, and so on.

TABLE V: Correlations of trajectory length and time.

Task  Env. Pearson Kendall Spearman
p cor p T p p

1 2.5D 0.8 -0.1111 0.9 0.066 67 0.8 0.07879
VR 0.000 08 0.896 0.002 0.6667 0.001 0.8322

2 2.5D 0.02 0.6444 0.2 0.303 0.2 0.3776
VR 0.07 0.5869 0.03 0.5394 0.04 0.6626

3 2.5D 0.008 0.7451 0.02 0.5636 0.02 0.6909
VR 0.0001 0.9099 0.01 0.6 0.004 0.8182

F. Threats to Validity

In the following, we want to point out threats that could
affect validity. Some of those threats are inherited from
the original experiments, others are specific to our analysis
presented in this paper.

Internal validity: The ambition of an experimenter is
that all dependent variables can be uniquely assigned to an
independent variable. For that, the participants were randomly
divided into six groups using a balanced latin-square order of
the environments for these groups to ensure that demographic
characteristics of the participants and the order of the tasks
does not play a major role. Most of the participants already
had previous experience with VR, so we can assume that
the novelty effect for the VR environment should not have
much impact. For minimize such effects, every participant got
the chance to train the general task in a training level for
both the 2.5D and the VR environment. There was no time



TABLE VI: Correlations of volume and time.

Task  Env. Pearson Kendall Spearman
p cor p T p P

1 2.5D 0.4 -0.3153 0.8 -0.1111 0.7 -0.1667
VR 0.002 0.7922 0.005 0.6061 0.005 0.7692

2 2.5D 0.2 0.3752 0.2 0.3333 0.2 0.4196
VR 0.3 0.3516 0.2 0.3596 0.2 0.4438

3 2.5D 0.04 0.6337 0.04 0.4909 0.04 0.6364
VR 0.0009 0.8491 0.006 0.6364 0.005 0.8

pressure—neither during the training nor the tasks itself. Of
course VR is still closely associated with gamification and fun,
so participants might spend more time in the VR environment
than necessary.

By automatically recording quantitative data only by the
experimental system during the experiment like the trajecto-
ries, the required time and the correctness, the influencing
factor of the experimenter was reduced. Even if these data
appear objective, the experimenter could still have influenced
the test procedure by his or her personality, different speeches
or fatigue. And even if there were no obvious dependencies
between the experimenter and participants, hidden benefits or
friendliness may have implicitly influenced the experiment. In
addition, since all participants received the same tasks (using
only different environments) and many of the participants
knew each other, we cannot rule out that the participants
informed each other about the test procedure and the desired
results even though they were told not to do that.

The sample is relatively small and its composition is un-
known, which does not allow the use of parametric statistical
test. We have therefore used non-parametric tests such as
the Wilcoxon test. In this way, we tried to eliminate the
effects of any outliers in our results. At the same time, we
are dealing with the disadvantage that these tests break down
the concrete quantifiable values to rank numbers, so that the
original differences of the values are ignored.

External validity: In addition to the question of the
internal, the question of external validity is also of great
importance: Are our results based on our sample generalizable
to other contexts?

We based the experiment on clone detection issues, as it
is well known that software has many clones. Accordingly,
all visualizations that we have presented to participants is
based on this clone information. Furthermore, we used the
EvoStreets algorithm for the visualization and limited the
visualization to the file level. The visualization created by
the automatic algorithm is characteristic for the Java systems
used, the metric displayed, the visualization level, and the
color scheme used; If one of these factors is changed, the
visualization also changes. Therefore, our results may refer
to only the factors described—other factors might lead to
different results.

Although our requirements for the participants regarding the
use of the VR environment are just a few and most of the
participants were somewhat familiar with VR environments,
we cannot rule out that existing or missing previous experi-
ences and the inherent game character of the VR environment
influenced the results in one direction or the other. It is

difficult to acquire non-university participants for experiments,
especially in the field of basic research or when the personal
or corporate benefit is not immediately apparent. We therefore
had to resort to convenience sampling, which is often not
a good profile of later users. In general, long-term on-site
studies must complement controlled experiments, but this
would involve more time, manpower, and financial effort for
both the scientists and the companies involved.

Construct validity: ~ We claim that there is a fundamental
difference in the use of 2.5D and VR environments while
solving visual comparison tasks such as visual clone detection,
which cannot be explained by different fields of view or
different input devices alone. Therefore, as far as possible, we
have normalized the representation on the technical as well as
on the visual side in order to achieve a high construct validity
according to Cronbach and Meehl [59]. We assume that the
time-dependent measurement of trajectories is an adequate
measurement method.

V. CONCLUSION

We analyzed movements of participants in EvoStreets both
in a 2.5D and VR environment gathered in a previous con-
trolled experiment [7]. We introduced new measures to capture
aspects of movements, namely, trajectory length, volume, and
average speed, and compared these to various performance
measures gathered in the experiment. We found a statistically
significant difference of the trajectory length between 2.5D
and VR only for one of the three tasks and a significant
difference for two tasks in case of the volume (where the
other task’s p-value was 0.07, thus, relatively close to the our
chosen threshold of significance of 0.05). Similarly, we found
a significant difference for the average speed for two tasks.
In addition, we searched for correlations of trajectory length,
volume, and average speed with correctness. We could not
find enough evidence for a correlation of these measures with
correctness, but found many statistically significant moderate
and strong correlations of trajectory length and volume with
respect to time.

The relevance of our findings and the future directions
that may be taken are as follows. Based on our results, it
seems unlikely that recommendation systems could leverage
trajectory length, volume, and average speed to detect whether
a human is giving an answer too quickly to be correct.
Yet, our data indicate that traveling in EvoStreets is a major
contributor to the time needed to solve a task and looking into
means to shorten this time through smart recommendations is
worthwhile. More research is needed to look into differences
in traveling in 2.5D and VR environments depending upon the
kind of task. For some tasks, we could identify differences, for
others we could not. If there are consistently no differences for
a particular set of coherent tasks between 2.5D and VR, inter-
actions and visualizations may be designed equally for both. If
there is a difference, interaction and visualization design must
pay attention to the peculiarities of those environments.



[1]

[2

—

[3]

[4]

[5]
[6]

[7

—

[8

[t}

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

F. Steinbriickner and C. Lewerentz, “Representing development history
in software cities,” in ACM International Symposium on Software
Visualization. ACM, 2010, pp. 193-202.

F. Steinbriickner, “Consistent software cities: supporting comprehension
of evolving software systems,” Ph.D. dissertation, Brandenburgische
Technische Universitdt Cottbus, 06 2013. [Online]. Available: https:
/lopus4.kobv.de/opus4-btu/frontdoor/index/index/docld/1681

R. Wettel and M. Lanza, “Visualizing software systems as cities,” in
2007 4th IEEE International Workshop on Visualizing Software for
Understanding and Analysis, June 2007, pp. 92-99.

——, “Codecity: 3d visualization of large-scale software,” in Companion
of the 30th International Conference on Software Engineering, ser.
ICSE Companion "08. New York, NY, USA: ACM, 2008, pp. 921-922.
[Online]. Available: http://doi.acm.org/10.1145/1370175.1370188

——, “Visual exploration of large-scale system evolution,” in 2008 15th
Working Conference on Reverse Engineering, Oct 2008, pp. 219-228.
S. S. Chance, F. Gaunet, A. C. Beall, and J. M. Loomis, “Locomotion
mode affects the updating of objects encountered during travel: The
contribution of vestibular and proprioceptive inputs to path integration,”
Presence: Teleoper. Virtual Environ., vol. 7, no. 2, pp. 168-178, 1998.
M. Steinbeck, R. Koschke, and M.-O. Riidel, “Comparing the evostreet
visualization technique in two- and three-dimensional environments—
a controlled experiment,” in International Conference on Program
Comprehension. 1EEE Computer Society Press, 2019, pp. 231-242.
R. Koschke, “Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 15, no. 2, pp.
87-109, 2003.

R. Keller, C. M. Eckert, and P. J. Clarkson, “Matrices or node-link dia-
grams: which visual representation is better for visualising connectivity
models?” Information Visualization, vol. 5, no. 1, pp. 62-76, 2006.

D. H. R. Holten, “Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 741-748, Sep. 2006.

B. Johnson and B. Shneiderman, “Tree-maps: A space-filling
approach to the visualization of hierarchical information structures,”
in Proceedings of the Conference on Visualization. 1EEE Computer
Society Press, 1991, pp. 284-291. [Online]. Available: http://dl.acm.
org/citation.cfm?id=949607.949654

S. Carpendale and Y. Ghanam, “A survey paper on software architecture
visualization,” University of Calgary, Technical Report 2008-906-19,
2008.

A. R. Teyseyre and M. R. Campo, “An overview of 3d software visu-
alization,” IEEE Transactions on Visualization and Computer Graphics,
vol. 15, no. 1, pp. 87-105, 2009.

S. Bassil and R. K. Keller, “A qualitative and quantitative evaluation
of software visualization tools,” in Proceedings of the Workshop on
Software Visualization. 1EEE, 2001, pp. 33-37.

S. Bassi and R. K. Keller, “Software visualization tools: Survey and anal-
ysis,” in International Workshop on Program Comprehension. IEEE,
2001, pp. 7-17.

P. Caserta and O. Zendra, “Visualization of the static aspects of software:
A survey,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, no. 7, pp. 913-933, 2011.

S. Diehl, Ed., Software Visualization: International Seminar Dagstuhl
Castle, Germany, ser. Lecture Notes in Computer Science. Springer,
2001.

S. Diehl, Software Visualization: Visualizing the Structure, Behaviour,
and Evolution of Software.  Springer, 2010.

L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz, “A systematic

literature review of software visualization evaluation,” Journal of

Systems and Software, vol. 144, pp. 165-180, 2018.
Available: https://doi.org/10.1016/j.js3.2018.06.027

T. Bladh, D. A. Carr, and M. Kljun, “The effect of animated transitions
on user navigation in 3d tree-maps,” in Ninth International Conference
on Information Visualisation (IV’05), July 2005, pp. 297-305.

W. Scheibel, C. Weyand, and J. Dollner, “Evocells - A treemap layout
algorithm for evolving tree data,” in International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and
Applications, 2018, pp. 273-280.

D. H. R. Holten, “Visualization of graphs and trees for software
analysis,” Ph.D. dissertation, Technical University of Delft, 2009.

[Online].

(23]

[24]

(25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[38]

(39]

[40]

[41]

[42]

C. Knight and M. Munro, “Virtual but visible software,” in Information
Visualization, 2000. Proceedings. IEEE International Conference on.
IEEE, 2000, pp. 198-205.

N. Capece, U. Erra, S. Romano, and G. Scanniello, “Visualising a
software system as a city through virtual reality,” in Augmented Reality,
Virtual Reality, and Computer Graphics, L. T. De Paolis, P. Bourdot,
and A. Mongelli, Eds. Cham: Springer International Publishing, 2017,
pp. 319-327.

J. I. Maletic, J. Leigh, A. Marcus, and G. Dunlap, “Visualizing object-
oriented software in virtual reality,” in International Workshop on
Program Comprehension, May 2001, pp. 26-35.

T. Panas, R. Berrigan, and J. Grundy, “A 3d metaphor for software
production visualization,” in International Conference Information Vi-
sualization. 1EEE, 2003, pp. 314-319.

T. Panas, T. Epperly, D. Quinlan, A. Saebjornsen, and R. Vuduc,
“Communicating software architecture using a unified single-view visu-
alization,” in Engineering Complex Computer Systems, 2007. 12th IEEE
International Conference on. 1EEE, 2007, pp. 217-228.

F. Fittkau, A. Krause, and W. Hasselbring, “Exploring software cities in
virtual reality,” in Working Conference on Software Visualization. 1EEE,
2015, pp. 130-134.

P. Khaloo, M. Maghoumi, E. Taranta, D. Bettner, and J. Laviola, “Code
park: A new 3d code visualization tool,” in Working Conference on
Software Visualization. 1EEE, 2017, pp. 43-53.

L. Merino, J. Fuchs, M. Blumenschein, C. Anslow, M. Ghafari, O. Nier-
strasz, M. Behrisch, and D. A. Keim, “On the impact of the medium in
the effectiveness of 3d software visualizations,” in Working Conference
on Software Visualization. 1EEE, 2017, pp. 11-21.

A. Schreiber and M. Briiggemann, “Interactive visualization of software
components with virtual reality headsets,” in Working Conference on
Software Visualization. 1EEE, 2017, pp. 119-123.

K. Ogami, R. G. Kula, H. Hata, T. Ishio, and K. Matsumoto, “Using
high-rising cities to visualize performance in real-time,” in Working
Conference on Software Visualization. 1EEE, 2017, pp. 33-42.

F. Fernandes, C. S. Rodrigues, and C. Werner, “Dynamic analysis of
software systems through virtual reality,” in Symposium on Virtual and
Augmented Reality, Nov. 2017, pp. 331-340, in Spanish.

L. Merino, M. Hess, A. Bergel, O. Nierstrasz, and D. Weiskopf, “Perfvis:
Pervasive visualization in immersive augmented reality for performance
awareness,” in ACM/SPEC International Conference on Performance
Engineering. ACM Press, 2019, pp. 13-16.

A. Elliott, B. Peiris, and C. Parnin, “Virtual reality in software en-
gineering: Affordances, applications, and challenges,” in IEEE/ACM
International Conference on Software Engineering, vol. 2, May 2015,
pp. 547-550.

D. A. Bowman, E. T. Davis, L. F. Hodges, and A. N. Badre,
“Maintaining spatial orientation during travel in an immersive virtual
environment,” Presence: Teleoper. Virtual Environ., vol. 8, no. 6,
pp. 618-631, 1999. [Online]. Available: http://dx.doi.org/10.1162/
105474699566521

B. E. Riecke, D. W. Cunningham, and H. H. Biilthoff, “Spatial updating
in virtual reality: the sufficiency of visual information,” Psychological
Research, vol. 71, no. 3, pp. 298-313, May 2007. [Online]. Available:
https://doi.org/10.1007/s00426-006-0085-z

J. W. Regian, W. L. Shebilske, and J. M. Monk, “Virtual
reality: An instructional medium for visual-spatial tasks,” Journal of
Communication, vol. 42, no. 4, pp. 136—149, 1992. [Online]. Available:
http://dx.doi.org/10.1111/j.1460-2466.1992.tb00815.x

B. Sousa Santos, P. Dias, A. Pimentel, J.-W. Baggerman, C. Ferreira,
S. Silva, and J. Madeira, “Head-mounted display versus desktop for
3d navigation in virtual reality: A user study,” Multimedia Tools
and Applications, vol. 41, no. 1, pp. 161-181, Jan. 2009. [Online].
Available: http://dx.doi.org/10.1007/s11042-008-0223-2

R. A. Ruddle, S. J. Payne, and D. M. Jones, “Navigating large-scale
virtual environments: what differences occur between helmet-mounted
and desktop displays?” Presence: Teleoperators & Virtual Environments,
vol. 8, no. 2, pp. 157-168, 1999.

R. A. Ruddle and P. Pruch, “Effects of proprioceptive feedback
and environmental characteristics on spatial learning in virtual
environments,” [International Journal of Human-Computer Studies,
vol. 60, no. 3, pp. 299 - 326, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1071581903001733

J. Sweller, Evolution of human cognitive architecture. New York,
NY, US: Elsevier Science, 2003, ch. Evolution of human cognitive



[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

architecture., pp. 215-266.

——, “How the human cognitive system deals with complexity,” Han-
dling complexity in learning environments: Theory and research, pp.
13-25, 2006.

——, “Some cognitive processes and their consequences for the
organisation and presentation of information,” Australian Journal of
Psychology, vol. 45, no. 1, pp. 1-8, 1993. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1080/00049539308259112

J. L. Plass, R. Moreno, and R. Briinken, Eds., Cognitive load
theory. Springer, New York, 2010, dFK_0237262. [Online].
Available: https://www.psychauthors.de/psychauthors/index.php?wahl=
forschung&uwahl=psychauthors&uuwahl=p00830RB

R. Moreno, “Cognitive load theory: more food for thought,” Instructional
Science, vol. 38, pp. 135-141, 2010.

E. Kl and Z. Yildirim, “Evaluating working memory capacity and cogni-
tive load in learning from goal based scenario centered 3d multimedia,”
Procedia - Social and Behavioral Sciences, vol. 2, pp. 4480-4486, 12
2010.

A. Korbach, R. Briinken, and B. Park, “Measurement of cognitive load
in multimedia learning: a comparison of different objective measures,”
Instructional Science, vol. 45, no. 4, pp. 515-536, Aug 2017. [Online].
Available: https://doi.org/10.1007/s11251-017-9413-5

——, “Differentiating different types of cognitive load: a comparison
of different measures,” Educational Psychology Review, vol. 30, no. 2,
pp. 503-529, Jun 2018. [Online]. Available: https://doi.org/10.1007/
$10648-017-9404-8

S. van der Land, A. P. Schouten, F. Feldberg, B. van den Hooff,
and M. Huysman, “Lost in space? cognitive fit and cognitive
load in 3d virtual environments,” Computers in Human Behavior,
vol. 29, no. 3, pp. 1054 - 1064, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0747563212002634
L. Gerry, B. Ens, A. Drogemuller, B. Thomas, and M. Billinghurst,
“Levity: A virtual reality system that responds to cognitive load,”
in Extended Abstracts of the 2018 CHI Conference on Human
Factors in Computing Systems, ser. CHI EA *18. New York, NY,
USA: ACM, 2018, pp. LBW610:1-LBW610:6. [Online]. Available:
http://doi.acm.org/10.1145/3170427.3188479

J. Vincur, P. Navrat, and 1. Polasek, “Vr city: Software analysis in
virtual reality environment,” in 2017 IEEE International Conference on
Software Quality, Reliability and Security Companion (QRS-C), July
2017, pp. 509-516.

M. Riidel, J. Ganser, and R. Koschke, “A controlled experiment on
spatial orientation in vr-based software cities,” in Working Conference
on Software Visualization, Sep. 2018, pp. 21-31.

M. P. Robillard and R. J. Walker, An Introduction to Recommendation
Systems in Software Engineering.  Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 1-11. [Online]. Available: https:
//doi.org/10.1007/978-3-642-45135-5_1

D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich, Recommender
Systems: An Introduction. Springer, 01 2010, vol. 24.

RecSys '07: Proceedings of the 2007 ACM Conference on Recommender
Systems. Foreword. New York, NY, USA: ACM, 2007, 609075.

L. Merino, A. Bergel, and O. Nierstrasz, “Overcoming issues of 3d soft-
ware visualization through immersive augmented realityl,” in Working
Conference on Software Visualization. 1EEE Computer Society Press,
2018, pp. 54-64.

H. A. Basit, M. Hammad, S. Jarzabek, and R. Koschke, “What do we
need to know about clones? deriving information needs from user goals,”
in International Workshop on Software Clones. IEEE Computer Society
Press, Mar. 2015, pp. 51-57.

L. J. Cronbach and P. Meehl, “Construct validity in psychological tests,”
Psychological Bulletin, vol. 52, no. 4, pp. 281-302, 1955.



