
A Controlled Experiment on Spatial Orientation in
VR-based Software Cities

Marc-Oliver Rüdel
University of Bremen, Germany

mor@uni-bremen.de

Johannes Ganser
University of Bremen, Germany

ganser@uni-bremen.de

Rainer Koschke
University of Bremen, Germany

koschke@uni-bremen.de

Abstract—Multiple authors have proposed a city metaphor for
visualizing software. While early approaches have used three-
dimensional rendering on standard two-dimensional displays,
recently researchers have started to use head-mounted displays
to visualize software cities in immersive virtual reality systems
(IVRS). For IVRS of a higher order it is claimed that they offer
a higher degree of engagement and immersion as well as more
intuitive interaction.

On the other hand, spatial orientation may be a challenge
in IVRS as already reported by studies on the use of IVRS
in domains outside of software engineering such as gaming,
education, training, and mechanical engineering or maintenance
tasks. This might be even more true for the city metaphor for
visualizing software. Software is immaterial and, hence, has no
natural appearance. Only a limited number of abstract aspects of
software are mapped onto visual representations so that software
cities generally lack the details of the real world, such as the rich
variety of objects or fine textures, which are often used as clues
for orientation in the real world.

In this paper, we report on an experiment in which we compare
navigation in a particular kind of software city (EvoStreets)
in two variants of IVRS. One with head-mounted display and
hand controllers versus a 3D desktop visualization on a stan-
dard display with keyboard and mouse interaction involving 20
participants.

Index Terms—Visualization, Virtual reality, Software engineer-
ing, Navigation

I. INTRODUCTION

The city metaphor in software visualization has emerged
from two-dimensional tree maps [1]. Tree maps in software
visualization show the hierarchical structure of software and
particular characteristics quantified as metrics by leveraging
a given two-dimensional space very space-economically. The
metrics determine the area of the software hierarchy’s leaves
(e.g., classes in a package hierarchy or files in source-code
directories). The leaves’ metrics are accumulated to their
containing elements in the hierarchy. The third dimension
in the city metaphor is used to show yet another metric
(e.g., coupling of classes). Through this third dimension, the
areas of two-dimensional tree maps become three-dimensional
blocks resembling tower blocks in modern city centers. As
a consequence, humans perceive this visualization as a city,
which has become eponymous for this type of visualization.

Several researchers have explored the city metaphor for
visualizing software using the three-dimensional extension of
tree maps known as code cities [2], [3]. Code cities are very
compact in a given space. On the other hand, deeply nested

Fig. 1. Beautified bird’s eye view of our automatically generated evaluation
system

hierarchies are difficult to distinguish because they offer very
few distinct patterns for human orientation. Moreover, when
not only a single version of a software is visualized but
its evolution over a longer period of time where elements
are removed, added, or changed, it may become difficult to
maintain the human observer’s mental map when the layout
changes drastically.

Steinbrückner has introduced an alternative kind of 3D
visualization based on the city metaphor, named EvoStreets
[4]. The nesting is represented by branching streets (see
Figure 2 for examples). The top-most street represents the
root of the hierarchy and is visualized as the thickest line.
Each lower level of the hierarchy is drawn as a right-angled
branching street with decreasing thickness. The leaves of the
hierarchy are drawn as blocks as in code cities. This layout
is less space economic, but offers the advantage that the
hierarchy is more easily recognizable, distinct patterns of city
districts are more often to emerge, and evolutionary changes
can more easily be integrated maintaining the spatial relations
of previous versions.

The early approaches of code cities and EvoStreets have
used three-dimensional rendering on standard two-dimensional
displays. Immersive virtual reality systems (IVRS) that use
head-mounted displays (HMD) for consumers have become
wide-spread [5], which has lead to the availability of a variety
of affordable HMDs and the necessary software infrastructure
to program virtual realities. For these reasons, researchers
in software visualization have also started to use HMDs to

��

�����*&&&�8PSLJOH�$POGFSFODF�PO�4PGUXBSF�7JTVBMJ[BUJPO

����������������������������¥�����*&&&
%0*���������7*440'5�����������

visualize software cities in IVRS [6], [7]. For IVRS of a
higher immersion equivalence class as introduced by Slater in
[8] and refined in [5], [9], it is claimed that they offer a higher
degree of engagement and immersion as well as more intuitive
interaction. Research in virtual reality found that the use of a
HMD may increase the orientation in three-dimensional virtual
environments due to the natural rotation and movement that
this medium allows [10]. Thanks to these two components,
the question arises whether a developer would benefit from a
HMD when exploring a software city, too. Spatial orientation,
however, may also be a challenge in IVRS as already reported
by studies on the use of IVRS in domains outside of software
engineering such as gaming, education, training, and mechan-
ical engineering or maintenance tasks [11]. This might be
even more true for the city metaphor for visualizing software.
Software is immaterial and, hence, has no natural appearance.
Only a limited number of abstract aspects of software are
mapped onto visual representations so that software cities
generally lack the details of the real world, such as the rich
variety of objects or fine textures, which are often used as
clues for orientation in the real world.

To further study the potential advantages and disadvantages
of HMDs in 3D visualization based on the city metaphor,
we ran a controlled experiment—involving 20 participants—in
which we compared navigation tasks in EvoStreets (including
relation visualization based on hierarchically bundled edges
[12]) within the two classes of equivalence of IVRS: one with
a HMD and hand-held controllers and one with a 3D desktop
visualization on a standard display with keyboard and mouse.

As stated above it is claimed that IVRS of the HMD class
offer a more intuitive orientation. But as Ruddle et al. have
pointed out, it cannot be taken for granted that participants
perform necessarily better with HMDs [13]. This has lead us to
formulate our first and primary hypothesis for the experiment:

Hypothesis 1: (HMD over Desktop): Users navigate more
effectively and efficiently in EvoStreets when they use a 3D
HMD instead of a pseudo 3D desktop system as a display
device.

We measure the efficiency of navigation as the completion
time of homing tasks (finding back to the initial starting
point) after some time was spent inside the visualized software
project. A homing task is considered effective when the
participant found back to the initial position.

This kind of performance measurement may be influenced
by many factors. Research on human-computer interaction
points out that the interaction method might have a greater
influence on the efficiency than the used medium [6], [14].
As a consequence, we should take a look at the familiarity of
participants with our interaction method (hand-held controller
versus keyboard and mouse). Other studies highlight that
frequent playing of computer games might have an impact
on the reaction time [15]–[17], vision [18], and learning
speed [19], [20] of the players [21], [22], taking us to the
following hypothesis:

Hypothesis 2: (influence of gaming experience): Users
who are familiar with navigating using a keyboard in computer

games achieve higher task completion efficiency.
The height, width, and breadth of blocks in an EvoStreet

is—unlike in real cities—influenced by the metrics mapped
onto these visual attributes. EvoStreets are designed for
visualizing the evolution of software where metric values
may change (see Section III-B). Moreover, different metric
mappings are applied frequently to show different aspects
(e.g., #defects vs. #developers, size vs. complexity, etc.).
Although this mapping does not change the structure, the
visual appearance can still be effected drastically when these
metrics are radically different. This influence is even more
of concern for different versions of a software. Therefore it
is of interest whether participants can transfer their spatial
knowledge between visualizations when different metrics are
used, pertaining to the next hypothesis:

Hypothesis 3: (influence of different metric mappings):
Users who are already familiar with the EvoStreet of a soft-
ware for one particular metric mapping can navigate equally
well if only the metric mapping changes (same structure, same
starting point).

The remainder of this paper is organized as follows. Sec-
tion II discusses related work in IVRS in general and soft-
ware visualization based on the city metaphor in particular.
Section III presents our controlled experiment and Section IV
discusses its results. Section V finishes with our conclusions.

II. RELATED WORK

This section describes related research. We will first sum-
marize related work in the area of navigation in virtual
environments in general and interaction design and then works
on using the city metaphor in software visualization.

Navigation in Virtual Reality. The topic of navigation in
virtual environments has been researched for a while [23]–
[25] and will be a topic of interest in the future due to the fast
progress in hardware and rendering techniques that allow the
creation of much bigger and more complex environments.

Sousa Santos et al. give an overview on the virtual envi-
ronments, discussing several papers that compared HMDs to
desktops [26], and describe an experiment on navigation in a
virtual maze they conducted. They found that, although users
were generally satisfied with the VR system and found the
HMD interaction intuitive and natural, most performed better
with the desktop setup.

Ruddle et al. investigated the possible benefit of HMDs
over traditional desktop systems with respect to navigation
in virtual environments [13], [27]. They researched the ability
to navigate within large virtual buildings, consisting of one
floor with nine rooms and one corridor [13]. The experiment
was a repeated round tour through several rooms, first with
instructions, later without. In another experiment, they focused
on proprioceptive feedback and its influence on navigation
within a maze as virtual environment [27]. In their first
experiment in a virtual building [13], they found that the HMD
had an advantage to the speed of the participants, in contrast
to their later experiment [27] and to Sousa Santos et al.’s
experiment [26], which both took place in a maze.

��

Besides the direct comparison between the two classes of
IVRS, other experiments where designed to research the spa-
tial cognitive capabilities within virtual environments. Homing
tasks [28]—also known as triangle completion tasks [29]—
were used to observe the influence of the amount of visual-
only spatial information on the spatial orientation of partici-
pants. These experiments were conducted in very constrained
virtual environments with the task of moving a cylinder. They
found a strong association of triangle layout on homing perfor-
mance, but no effect of geometrical fields of view: variations
in the amount of simultaneous visible spatial information
did not influence the acquisition of spatial knowledge in the
environments used. Whether and how these results obtained
for very specific geometrical problems can be transferred to
navigation in virtual software cities is a separate question. The
concept of homing is what we have applied in our experiment:
finding a path back to an intial starting point.

As for the interaction, especially the locomotion in vir-
tual environments has an impact on the spatial orientation
of participants as Bowman et al. [23] found out in their
maze based experiment. Locomotion describes ways to move
through the virtual worlds such as teleportation, flying, etc.
Ways of locomotion differ also in terms of who is in control.
A system can transport a user from one point to another, or a
user can decide on his or her own where to move. Bowman
et al. found that the latter better supports spatial orientation.
We chose user-controlled flying with a constant speed, that
is, a user can point freely in the direction she or he wants to
go and click a button on the controller to start moving. This
way of locomotion has shown to be simple and intuitively
understandable and decreases the chances of sickness.

Compared to classical software visualizations, 3D repre-
sentations of software have the added value of the spatial
dimension. However, in our scenario, this spatial dimension
can only be used by explorers of the software if they have
orientation. In order to acquire orientation, it is necessary to
move in the environment [24], [30]. We did not specify any
paths that the participant had to use on his/her way home,
but—as usual in the homing task—left the path finding to the
subject.

The type of movement seems to play an essential role: a
continuous movement is advantageous for the formation of a
spatial model [23], [24], [30], [31]. According to [23], the
flight metaphor seems to have been one of the best studied
motion metaphors. A flight metaphor offers—even in reality—
the highest flexibility of movement (the restrictions on given
’paths’, independent path finding), continuous updating of the
spatial perception, and a bird’s eye view.

Furthermore, many types of movement used in modern
computer games seem to be of limited suitability for the
acquisition of spatial orientation, since, according to [23],
they tend to lead to disorientation. We decided against both
teleportation and guided movements.

Many of these experiments have been conducted in small
and/or maze like virtual environments. So for the purpose of
software comprehension through exploration of city visual-

izations findings might differ, because of the difference in
these kinds of virtual environments. This is especially true
for visualizations of modern software systems that consist of
several thousands of entities shown as buildings.

Interaction Design. The interaction with a system has
an impact on the performance as already discussed. In an
experiment, interaction must be easy to learn, so that neither
the interaction nor learning effects influence the results too
much. To achieve such an interface, several approaches are
feasible. First, we can use an interface that is already well
known, second (which is a special case of the first) we can
use a natural user interface, meaning an interface that is just as
it would be in the real world and therefore already well known.
In the latter case, Mine provides an overview on different
approaches [32] as well as Guan and Zheng, and Nielsen et
al. in regards to gestures [33], [34].

In our experiment we decided to use the simple pointing
gesture for the HMD, to move and also to mark elements
in our EvoStreets, activated with a button on the controller
and visualized as a solid beam in the VR for feedback to
the user. Desktop systems with mouse and keyboard are
today well established. Common interfaces for movement in
virtual environments can be found in games, game engines
and application for graphic modeling. Other research that
compared the common WASD input method were described
by McMahan et al. and Nacke et al. [35], [36].

Software City Metaphor. We have already introduced code
cities and EvoStreets in Section I. We have chosen EvoStreets
for our experiment because—in contrast to code cities in the
line of Wettel’s seminal work [2]—it has a strong continuity
over changes between versions and provides a structure that
stretches itself out, leaving more space between objects of
interest [4]. For virtual environments that are meant to be
explored and not only to be seen from afar it is of advantage
that EvoStreets take advantage of the infinite virtual space.

Each visualization has a specific target group and infor-
mation that it elaborates, which is also true for software
cities. Knight and Munro give an overview on virtual reality
for software visualization [37]. Panas et al. approached the
idea of a multi-stakeholder visualization in 3D [38], [39].
Recent researchers such as Khaloo et al. [40] and Merino et
al. [6] approach developers at their software comprehension
tasks. Ogami et al. also target developers with their code
city, but focus on runtime performance information for the
localization of bottlenecks or leaks [41]. On the tool side
there are the contributions by Schreiber and Brüggemann with
a visualization technique for OSGi component specification
based systems [42] and Baum et al. with GETAVIZ, a tool for
evaluation of software visualizations [43].

III. CONTROLLED EXPERIMENT

To verify the hypotheses stated in Section I, we conducted
a controlled experiment in which participants had to solve a
navigation task in two virtual environments of the described
different equivalence classes of IVRS [5], [8], [9]: one with
a HMD and hand-held controllers and one with a 3D desktop

��

visualization on a standard display with keyboard and mouse.
In the following we summarize the design of our experiment.

We used a HTC Vive as HMD and a 30” monitor for the
desktop. Our evaluation system ran on a simple gaming-ready
PC with an NVIDIA GeForce GTX 1070 graphics card.

A. Design of the Experiment

The main objective of our experiment was to validate
the influence of the IVRS equivalence class (independent
variable) on the navigation efficiency and effectiveness of the
participants in a typical EvoStreet. For this purpose, we defined
homing tasks, which each participant should complete after a
training phase on two different software projects (SW 1 and
SW 2) with two different metric mappings (see Table I).

To counter learning effects between the two types of IVRS,
we separated the participants randomly into two different
groups. Group 1 started with a desktop computer and then
moved on to the HMD, while group 2 followed the opposite
order. Each software project was presented in two different
variants which differed only in the metric mapping, but not
the structure. That is, the only difference between these two
variants was the width, breadth, and height of the buildings.

The first task for each type of IVRS was a simple training
task that was ignored in the evaluation. The order of the
software projects and chosen metric mappings was the same
for all participants. As a consequence, the order of the viewed
EvoStreets is consistent between the two different groups and
allows us to make interpersonal comparisons between both
groups where only the IVRS is varied. Every participant
participated in all six tasks (including the training tasks),
which allows us to compare the results intrapersonally from
one type of IVRS and software project with varying metric
mappings (Task 1-1 vs. Task 1-2 and Task 2-1 vs. Task 2-2)
as well as between different IVRS (Task 1-1 and Task 1-2 vs.
Task 2-1 and Task 2-2).

The homing task is based on a typical task in the area of
software exploration: “Follow the call graph until you find
the function you are looking for and then go back to where
you came from.” Our scenario reflects a situation in which a
developer must understand a given method A that calls other
methods transitively. In order to understand A, she/he must
understand a method B directly called by A, which in turn
calls another method C, which calls yet another method D.
The developer follows the call path A, B, C, D and is satisfied
at D. She/he must now return to the original context A. The
same happens in an IDE when you follow calls. Homing is
an essential part here. Our experiment investigates whether
developers can return to home without any additional means
analogously to the real world, which VR code cities claim to
simulate. To avoid overloading the participants, we limited the
homing task to just three steps, before they had to find their
way back to the starting point. So, participants with lesser
memory capabilities should not have had a major disadvantage.

The participants were told in advance, that is, at their initial
starting point, that they would be asked to return to this point

before they started. They were reminded of that each time they
entered a new EvoStreet to start a new homing task.

From each point in the call graph, there are several relations
to other points. Only one of the relation leads to the correct
next point. Both the points and the links are labeled with
an alphanumeric code so that the participants merely had to
follow the link with that code to get to the next node. Thus,
the participants did not have to deal with the internal structure
of the presented software to find the right way. They would
only need to memorize the decision points to find their way
back. They were not allowed to write down the labels.

The starting and ending points and both intermediate points
of each path have been determined by us before the start
of the test. We chose the points in such a way that they
were located in different regions of the EvoStreets so that
the participants could make themselves familiar with different
city districts and also to enforce the need for a new orientation
from one navigation task to another one. If the points had
been too close together, the participants might have just
followed unconsciously the memorized directions along the
path of the previous task. Furthermore, based on our real-
world experience, we assumed that navigation would be much
easier when the very same path had to be taken a second
time, even if the EvoStreet looks slightly different due to a
changed metric mapping. To counter this learning effect, we
chose a different path for each task. However, when choosing
the points of the second tasks for the same IVRS, we took
care that the paths between the points ran through areas of the
first task in the same software project, so that the participants
could possibly take advantage of the knowledge of the first
task to allow the creation of a mental map.

To mitigate the influence of different experimenters, the
same experimenter guided all participants in all tasks. For
each participant, the experimenter briefly explained the task
(homing as fast as possible). Before using a new virtual
environment, participants were introduced to the control op-
tions in each of the virtual environments. Subsequently, the
participants were allowed to perform the experiment on a
smaller software project as a training task. The experimenter
emphasized the task of the experiment (the homing task). Once
the participants stated that they felt safe enough to handle the
controls, the actual experimental treatment and measurement
began.

During the experiment, the experimenter stated the number
of the next edge to take and next node to arrive via this
edge. The participants were always allowed to ask for these
navigation information again. After reaching the final point
in the path, the experimenter asked the participants to now
return to the starting point as fast as possible. Since we did
not want to measure the memory performance but the intuitive
orientation ability of the participants, the experimenter was
allowed to name them the alphanumeric codes, but not the
direction or whether they have already found back to the
starting point.

The participant had to tell the experimenter the building
she or he thought to be the initial starting point. If this answer

��

(a) Task 1-1: SW 1, Metric A (b) Task 1-2: SW 1, Metric B

(c) Task 2-1: SW 2, Metric A (d) Task 2-2: SW 2, Metric B

Fig. 2. Homing tasks per software project, metric mapping, and IVRS: Subjects were instructed to follow the path along call edges from the starting point
A over B and then C to the returning point D (shown in green) and then to return to A by themselves. The shortest path back from the returning point D
to A is shown in red. Details of the software projects’ size can be found in Table II.

was correct, the homing task ended and was considered solved.
If not, the participant could continue. There was no limit on
the attempts to identify the starting point. A participant could
give up anytime if she or he felt that the homing task was
past hope. The experimenter told the participant in this case
that a canceled attempt is not bad, so as to not demotivate the
participant for the next task.

The experimental setup was tested in a pilot study with three
participants, where no problems occurred.

We measured the effectiveness and efficiency of task comple-
tion. The effectiveness of task completion was defined by two
factors: Firstly, (a) whether the participant found the way back
to the starting point on his own and secondly (b) how many
points he had erroneously called the final target (the initial
starting point). Efficiency was measured as the time required
for task completion.

B. EvoStreets
We decided to show representations of real software as

EvoStreets in our experiments. The global dependency graph

for the selected software projects were extracted by the Java
analyzer of the Axivion Bauhaus Suite [44]. As a graphics
engine, we used the Unreal Engine 4.15, for which we created
plug-ins and an application that could read the dependency
graph from a file and transform it according to selectable
parameters such as display depth, color, texture, scaling, and
visibility in an EvoStreet. Hierarchically bundled edges of
different types can be included in the EvoStreet, if needed.

We selected two open-source projects of the Apache Com-
mons project [45], see Table II. The two projects are similar
in size with respect to source lines of code (SLOC). However,
software project SW 1 includes about twice as many Java files,
a quarter more classes, and about twice as many methods.

Based on our basic tasks (navigation in a call hierarchy),
we used the method view as the EvoStreets for the experiment.
That means buildings represent methods, relations constitute
calls between two methods, and streets represent syntactic
nesting of packages and classes (cf. Figure 1).

Other researchers have proposed to use colors, textures, or

��

TABLE I
DESIGN OF THE EXPERIMENT

Phase Group 1 Group 2

Demography

1. Data Privacy Statement
2. Security Statement
3. Waiver
4. Demographic Questionnaire

Introduction Explanation of the main purpose of the experiment

Try-Out Desktop HMD
Task 1-1
(SW 1, Metric A) Desktop HMD

Task 1-2
(SW 1, Metric B) Desktop HMD

Try-Out HMD Desktop
Task 2-1
(SW 2, Metric A) HMD Desktop

Task 2-2
(SW 2, Metric B) HMD Desktop

Qualitative
Statistics

1. meCue Questionnaire
2. SUS Questionnaire
3. additional questions

other kinds of decorations to show additional information [2],
[4]. These may also provide additional clues to memorize loca-
tions, but they may also overwhelm a user through information
overloading while navigating. We have abstained from these
visual attributes to avoid yet another dimension of variation for
the experiment. We consider the investigation of the influence
of colors, textures, and decorations on navigation as future
research.

TABLE II
METRIC TOP-LEVEL DATA OF THE SOURCE CODE USED

SW 1 SW 2
commons-cli-1.4-src commons-chain-1.2-src

SLOC 6.681 8.010
Java files 50 97
classes 73 94
methods 398 799
relations 3.122 5.488

The height of a building represents the lines of code of the
represented method, the width and depth of a building (from
the direction of the associated street) represent the halstead
complexity and the maximal nesting depth, respectively, of
a method. Our EvoStreet layouter is based on the algorithm
of Steinbrückner [4], supplemented by an adjustable distance
between the buildings to better separate them visually from
each other.

Because the call graph is our basic navigation target, we
decided to always show all realtions. Steinbrückner [4] sug-
gests the use of relations and their bundling in EvoStreets.
To increase the clarity in graphs with many realtions, it
is advisable to bundle the relations hierarchically [12]. The

Computer

Gamer

Graphics

Programmer

VR

never tried 1/w
< 1 h/d

> 1/w
< 1 h/d

> 1/w
> 1 h/d

Frequency of Use

D
em

og
ra

p
h
ic

 C
on

d
it

io
n

Fig. 3. Histogram of Demographic Informations

structure of an EvoStreet results from the hierarchy which we
used also for the bundling of the connections.

A participant can select individual elements (buildings and
realtions) of the EvoStreet, thereby the elements are marked
clearly visible and additional information is displayed (unique
alphanumeric ID, metric values, source-location information).

C. Participants
In the absence of deeper insights into relevant key charac-

teristics of developers and their distribution in the target pop-
ulation of developers in general and also because of practical
reasons, we used convenience sampling to find participants
for our experiment. We asked friends, fellow students, and col-
leagues for participation. All of them had a strong background
in computer science and software development. Participation
was voluntary and no incentive was given. Initially, 23 people
agreed to participate but during the experiment three dropped
out because of dizziness.

The age of the participants was in the range of 20–50
with only one exceptional participant at the age of 60. 15
of them were in between 20 and 35. Three were females.
Eleven participants were students and nine researchers. We
asked them for their experience in the use of computers,
programming, computer gaming, graphic tools, and virtual
reality in terms of frequency per week and hours per day
(cf. Figure 3). We also asked the participants for a participative
self-assessment of their perceived orientation skills On a scale
of ”bad/rather bad/rather good/good” more than 50 % of the
participants rated themselves as ”rather good” and 25 % as
”rather bad”.

IV. DISCUSSION AND RESULTS

During the experiment, we recorded the times each partic-
ipant needed from one point to the next, and in particular
the times for the way back (excluding the time required for
explanations) and the exact way points taken. Furthermore, for

��

the qualitative analysis, we used a screen recorder with audio
and thus logged all statements of the participants as well as
the meCue and SUS questionnaire.

We used the collected data to perform a quantitative analysis
of the participants’ effectiveness and efficiency based on the
factors described above. Though giving up in reality is usually
not an option, we allowed the participants to cancel their
search if, during navigation, they felt that they had no more
ideas where the target point might be.

A. Effectiveness
In this section, we report results relevant to hypotheses

with respect to effectiveness. Specifically, for effectiveness,
we analyzed how many of the participants found back and
if they found it, how many wrong buildings they stated to
be the initial starting point. We calculated the percentage
of successful returns (a binary decision as to whether they
reached the starting point or not) and the number of erroneous
supposed starting points.

1) Lost or Found: Not all participants found back to the
starting point. We observed a dropout rate of around 20 %
regardless of other factors. Individual large differences were
found. Some participants found back in each experiment,
others reached the starting point in only 25 % of the tasks. If
we consider the factors IVRS and participant group, we find
in the first case nearly identical success rates for both IVRS
(desktop: 0.83, HMD: 0.84), in the second case distinctly
different success rates (group 1: 0.90, group 2: 0.75). The
averaged values of all eight tasks across all participants are
shown in Figure 4. The mean for all these task is 0.83 with a
standard deviation of 0.02.

The very high dropout rate of 20 % compared to our
pilot run surprised us. During the experiments, we did not
notice any decreasing seriousness in the task processing of
the participants. Thus, we attribute this high number, on the
one hand, to a suppressed, physical burden on the participants
(some participants had to deal with dizziness independently
of the kind of IVRS), and on the other hand, to the particular
characteristics of the participants in the pilot run.

Group 1 participants (who started with the desktop IVRS)
returned to the starting point more frequently than group 2
participants (0.90 vs. 0.75) This may be due to the fact that
group 1 members started with an IVRS already known and
were able to carry over their experience from the desktop to
the HMD IVRS, whereas group 2 started with an IVRS not
yet known. As one can see in Figure 4, the successful return
rates between the different tasks diverge (0.83± 0.02).

In summary, differences could be observed for the order in
which the two different types of IVRS were applied, but not
for the types of IVRS as such.

2) Number of Errors: On their way back, we recorded how
often the participants called buildings home that were actually
not the starting point they were looking for. 38 % of the
erroneous tasks were done with 0–5 wrong selections. Some
participants needed many attempts until they either found the
target element or gave up. As shown in Figure 5 where the

1-A 1-B 2-A 2-B

Desktop HMD Desktop HMD Desktop HMD Desktop HMD

0

5

10

15

Task

N
u
m

b
er

 o
f
P

ar
ti

ci
p
an

ts

unsuccessful
successful

Fig. 4. Effectiveness—general success by subtask

All

2-B-HMD

2-B-Desktop

2-A-HMD

2-A-Desktop

1-B-HMD

1-B-Desktop

1-A-HMD

1-A-Desktop

0 10 20 30

Tries

T
as

k

Fig. 5. Effectiveness—number of errors by subtask

full details of all tasks are presented, there does not seem to
be a systematic difference between the different tasks.

The participants followed different strategies for the tasks.
While the analysis of these strategies was not in the focus
of our investigation, we were nevertheless able to identify
patterns in task accomplishment. Partly the participants also
mentioned during the task what they wanted to do differ-
ently/better in the next task (they thought aloud without being
instructed to do so).

Some participants always flew with an “inner peace” very
purposefully without fixation on a certain wrong building and
chose the right home building well. Other participants asked a
lot, tried many buildings, tried to explore the internal structure
of the buildings to get an indication of where the sought-after
place might be. These pursued a kind of brute-force try-and-
error strategy. Whether this strategy was successful or not

��

often depended on whether their unconscious or conscious
orientation skills had guided them to the right region. Again
other participants, despite knowing that they should search for
the fastest route, shuffled all the way back to the starting point
via the intermediate points C and B. Although this strategy
was the most time-consuming, it had the highest probability of
success at 100 %. Each participant appeared to make a time-
accuracy trade off, which is likely to be driven by their prior
experiences and personality.

3) Gamers/Graphic Artists: Gamers and graphic artists
may have an advantage over other types of users given their
experience in computer interactions similar to the ones we
offered in our desktop IRVS as formulated in hypothesis 2. In
the following, we will label gamers and graphic artists together
as gamers and all others as non-gamers.

Gamers have a higher successful-return rate (88.10 % versus
77.14 %) but also a higher mean error rate (9.02 versus 6.8).
Yet, both differences are not statistically significant with a p-
value over 0.2.

4) Metric Mappings: Hypothesis 3 expects no difference
between two different metric mappings with respect to ef-
fectiveness. Our measurements show that there is a higher
successful-return rate (79.49 % versus 86.84 %) but a lower
mean error rate (7.95 versus 9.50) for metric mapping A
versus metric mapping B. Yet again, both differences are not
statistically significant with a p-value of 0.4.

B. Efficiency
For efficiency we measured the time from the returning

point to the starting point. A comparison of the required time
in the homing task to the times in the previous steps from the
starting to the return point would be suitable for generating
a personal speed profile for the virtual environments or their
control mechanisms. It would allow us to put the speed for
their homing task into relation to their normal speed of travel.
This was not the focus of our study.

Prior to the experiments, we determined for each homing
task the shortest duration if a participant would go straight
to the starting point without hesitation. We normalized the
actually achieved times of the participants in relation to the
best time, then converted these times into speeds. The resulting
speed values are given in percent of a possible maximum
speed.

Some of the tasks were canceled by the participants before
reaching the target. The speeds for these tasks (about 20 %,
see Section IV-A1) were set to 0 and included in the further
calculation.

We used the Shapiro-Wilk test to check whether speed for
desktop and HMD is normally distributed. The result suggests
it is (W=0.92, p=0.00009), whereas the Kolmogorov-Smirnov
test indicates that we need to reject the null hypothesis that
speed is normally distributed (D=0.15, p=0.07), although the
p-value is very close to our significance level of 0.05. If we ap-
ply the two tests to the subgroups of the ’gamers’ and the ’non-
gamers’, we get again somewhat inconclusive results: while
Shapiro-Wilk’s test suggests a normal distribution in the group

of ’non-gamers’ (W=0.86, p=0.0003), but not for ’gamers’
(W=0.95, p=0.055; again slightly above the significance level
of 0.05), the Kolmogorov-Smirnov test indicates both groups
to be normally distributed (’gamers’: D=0.5, p=2e-09; ’non-
gamers’: D=0.5, p=5e-08). To be safe, we assume no normal
distribution in the following.

1) Speed by Virtual Environment: This section discusses
the results for hypothesis 1 with respect to efficiency. Figure
IV-B1 shows the averaged speeds and their standard devia-
tion. There is hardly any difference between the two virtual
environments as confirmed by the Wilcoxon-Mann-Whitney
test (W=600, p=0.2). Thus, we must reject our hypothesis 1:
There does not seem to be a significant difference between the
two IVRS ’desktop’ and ’HMD’ with respect to efficiency.

0.00

0.25

0.50

0.75

1.00

Desktop HMD

S
p
ee

d

(a) Speeds by IVRS

IVRS Mean SD Median
Desktop 0.19 0.16 0.16
HMD 0.26 0.21 0.23

0.00

0.25

0.50

0.75

1.00

1 2

S
p
ee

d

(b) Speeds by group

Group Mean SD Median
1 0.23 0.17 0.21
2 0.21 0.19 0.21

Fig. 6. Efficiency

2) Learning Effects: In Figure 8 and Figure 7 we give an
overview of the achieved speeds in the eight tasks. In this
representation, it can be seen that the speeds in each group
of the first task are lower than in any other later task. Even
the switch between the two different IVRS from Task 1-2 to
Task 2-1 shows no drop of speed back to the level of the
first task in both groups. We conjecture that either the training
for the EvoStreet was not yet completed despite statements to
the contrary by the participants or that the participants were
overwhelmed by the increased size of the EvoStreets for the
actual experiment.

3) Speed by Group: By comparing the participants’ speeds
in the two groups 1 and 2, we examined whether there were
any real speed differences that could be attributed solely to
the fact that the participants started with a particular kind
of IVRS. The Wilcoxon-Mann-Whitney test shows no sta-
tistically significant difference between both groups (W=600,
p=0.2). Thus, we can rule out that participants generally had
a speed advantage only by starting with a particular kind of
IVRS.

4) Speed of Gamers/Graphic Artist: This section looks into
hypothesis 2 regarding the influence of gaming experience. A
frequently described challenge when comparing different vir-
tual environments are previous experiences of the participants
in the means of interaction offered by an IVRS. There could
also be such advantages in our experiment, especially as we
have used an interaction scheme for the desktop system that

��

1 2

A B A B

0.0

0.2

0.4

0.6

Task

M
ea

n
 o

f
S
p
ee

d

IVRS
Desktop

HMD

Group
1

2

Software

Metric

Fig. 7. Efficiency—Mean of speed by group

Desktop

HMD

Desktop

HMD

HMD

Desktop

HMD

Desktop

1-A 1-B 2-A 2-B

1
2

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Participant

P
er

ce
n
ta

ge
 S

p
ee

d

Task

G
rou

p

Fig. 8. Efficiency—Speeds of all participants in all tasks by group; upper
part shows group 1, lower part shows group 2

is familiar to certain user groups: gamers and graphic artists.
In order to be able to better assess possible advantages of
computer gamers, we examined whether there are differences
for participants who—according to their self-assessment—
spend more than a day a week playing desktop computer
games.

As expected, we noticed that the speeds in the steps before
the homing task actually started (i.e., on their path from
the starting point to the point where they were expected
to return) was a lot higher for computer gamers. Likewise,
during the homing task the speeds of the ’gamers’ were also
statistically significantly higher than the ’non-gamers’ (cf.
Figure 10a) according to the Wilcoxon-Mann-Whitney test
(W=1000, p=0.005). Thus, gamers travel faster.

When assigning participants randomly to the groups, we

1 2

1-A 1-B 2-A 2-B 1-A 1-B 2-A 2-B

0.0

0.2

0.4

0.6

Task

M
ea

n
 o

f
S
p
ee

d

Group

Fig. 9. Efficiency—Mean speeds of all participants in all tasks by group with
error indicators

made sure that they were distributed homogeneously over the
two test groups ’desktop’ and ’HMD’, so that the effects of
this previous experience was balanced out.

5) Speed by Metric Mapping: In this section, we turn to
hypothesis 3 on the influence of changing metric mappings.
The same software project was used twice for the task, where
only the metric mapping was changed. Thus, the paired tasks
on the same software project differed primarily in the applied
metric mapping. If our hypothesis 3 were correct, we should
see no difference when comparing Task 1-1 to Task 1-2 and
Task 2-1 to Task 2-2 (cf. Table I).

Figure 10b shows the results of this comparison. The
participants were faster in the second metric mapping. As
already noted above, Task 1-1 is somewhat exceptional as we
observed the slowest speeds for it (cf. Figure 8). Yet, even if
we compare the speeds for two different metric mappings only
in project SW 2, the Wilcoxon-Mann-Whitney test finds no
significant differences. From this we conclude that changing
only the metric mapping in an EvoStreets graph has no positive
effect (neither a negative one) on the spatial orientation or
participants in an EvoStreets visualization they have already
visited.

C. User Experience

After the experiment, we asked the participants to fill out
two common user-experience questionnaires. Neither meCue
(desktop 3.68, HMD 3.35 for the overall evaluation) nor
SUS (desktop 80.63, HMD 81.25 for total scores) shows any
significant difference. The participant showed no preference
for one particular kind of IVRS—neither in any specific aspect
of the questionnaires nor in the overall summary result.

D. Threats to Validity

We used convenience sampling to reach out for experimental
participants. On the one hand, convenience sampling is speedy,

��

0.00

0.25

0.50

0.75

1.00

Non G/GA G/GA

P
er

ce
n
ta

ge
 S

p
ee

d

(a) Speeds by Gamer

Sample Mean SD Median
G 0.28 0.19 0.28
Non-G 0.15 0.15 0.08

0.00

0.25

0.50

0.75

1.00

A B
P

er
ce

n
ta

ge
 S

p
ee

d

(b) Speeds by metric mapping

Metric Mean SD Median
A 0.16 0.18 0.06
B 0.28 0.18 0.29

Fig. 10. Efficiency

easy, readily available, and cost effective. On the other hand,
the results cannot necessarily be generalized to the target
population consisting of all possible developers due to poten-
tial disproportional representation of subgroups in the sample.
Another threat may be that the participants might have wanted
to do the experimenters a favor. Yet, subjective opinions were
collected only in the usability questionnaire. The hypotheses
were tested with factual and objectively measured data.

We limited our study to two Java programs and four kinds
of metrics. We cannot necessarily generalize our results to
other programming languages, programs, and metrics with
other characteristics. Our specific rendering of EvoStreets and
means for interaction may have had an influence on the results.
Other visual mappings and forms of interaction may lead to
different results.

V. CONCLUSION

Software cities help at comprehension tasks, by giving a
spatial component as well as a structure, which is supposedly
intuitive due to the used metaphor [31]. The comprehension
achieved by the use of a software city contains knowledge
about the spatial orientation of the city elements. Having
in mind that—thanks to technological improvements—it is
possible to explore software cities interactively in VR today,
we researched whether a change in the IVRS used to explore
the software city makes a difference in spatial orientation. We
compared two classes of IVRS: HMD and desktop.

To this end, we implemented an Unreal Engine Plugin to
visualize graphs that represent software systems rendering
them in a configurable 3D scene. We used EvoStreets, which
might be easier for orientation tasks than the 3D tree maps,
known as code cities [2], thanks to additional space between
elements and a more diverse structure. The EvoStreets used in
our experiment were explored in a method view, containing
several hundreds methods each. Additionally the relations
between the methods were shown as hierarchically bundled
edges above the roofs.

The orientation tasks our participants were confronted with
were homing tasks, where the path through an EvoStreets from
a starting point A to a return point D (passing two intermediate
points) was the learning phase and the homing back from D
to the start A was the measured part.

Our primary hypothesis was that the class of HMDs would
make it easier to gain a spatial orientation inside of software
cities. We have to reject this hypothesis based on the results
of our controlled experiment with 20 participants.

In addition to that, we found that gamers have an advantage
in navigation speed (but not in effectiveness), hinting at that
interaction skills may have an influence, and overall efficiency
may be increased if one learns an interaction well. As a
practical implication, we need to give users enough time
to familiarize themselves with new types of interaction and
visualization.

We found no learning effect when a participant has visited
an EvoStreet before, after changing only the metric mapping,
which affects the size attributes of buildings, but not the
structure of the city. This must be taken into account if
developers of 3D code-city tools consider to allow users to
adjust the metric mapping and also if the same software project
is shown over a period of evolution where such attributes can
change. We need to think about means to maintain the mental
map even for such non-structural changes.

ACKNOWLEDGMENT

The authors would like to thank all participants of the
experiment.

REFERENCES

[1] B. Johnson and B. Shneiderman, “Tree-maps: A space-filling
approach to the visualization of hierarchical information structures,”
in Proceedings of the Conference on Visualization. IEEE Computer
Society Press, 1991, pp. 284–291. [Online]. Available: http://dl.acm.
org/citation.cfm?id=949607.949654

[2] R. Wettel and M. Lanza, “Visual exploration of large-scale system
evolution,” in Reverse Engineering, 2008. WCRE’08. 15th Working
Conference on. IEEE, 2008, pp. 219–228.

[3] T. Bladh, D. A. Carr, and M. Kljun, “The effect of animated transitions
on user navigation in 3d tree-maps,” in Information Visualisation, 2005.
Proceedings. Ninth International Conference on. IEEE, 2005, pp. 297–
305.

[4] F. Steinbrückner, “Consistent software cities: supporting comprehension
of evolving software systems,” Ph.D. dissertation, Brandenburgischen
Technischen Universität Cottbus, Cottbus, 06 2013. [Online]. Available:
https://opus4.kobv.de/opus4-btu/frontdoor/index/index/docId/1681

[5] M. V. Sanchez-Vives and M. Slater, “From presence to consciousness
through virtual reality,” Nature Reviews Neuroscience, vol. 6, no. 4, pp.
332–339, 2005.

[6] L. Merino, J. Fuchs, M. Blumenschein, C. Anslow, M. Ghafari, O. Nier-
strasz, M. Behrisch, and D. A. Keim, “On the impact of the medium in
the effectiveness of 3d software visualizations,” in Software Visualization
(VISSOFT), 2017 IEEE Working Conference on. IEEE, 2017, pp. 11–
21.

[7] F. Fittkau, A. Krause, and W. Hasselbring, “Exploring software cities
in virtual reality,” in Software Visualization (VISSOFT), 2015 IEEE 3rd
Working Conference on. IEEE, 2015, pp. 130–134.

[8] M. Slater, M. Usoh, and A. Steed, “Depth of presence in virtual
environments,” Presence: Teleoper. Virtual Environ., vol. 3, no. 2, pp.
130–144, Jan. 1994. [Online]. Available: http://dx.doi.org/10.1162/pres.
1994.3.2.130

[9] M. Slater, “Place illusion and plausibility can lead to realistic behaviour
in immersive virtual environments,” Philosophical Transactions of the
Royal Society of London B: Biological Sciences, vol. 364, no. 1535, pp.
3549–3557, 2009. [Online]. Available: http://rstb.royalsocietypublishing.
org/content/364/1535/3549

[10] S. S. Chance, F. Gaunet, A. C. Beall, and J. M. Loomis, “Locomotion
mode affects the updating of objects encountered during travel: The
contribution of vestibular and proprioceptive inputs to path integration,”
Presence, vol. 7, no. 2, pp. 168–178, 1998.

��

[11] A. R. Teyseyre and M. R. Campo, “An overview of 3d software visu-
alization,” IEEE transactions on visualization and computer graphics,
vol. 15, no. 1, pp. 87–105, 2009.

[12] D. Holten, “Hierarchical edge bundles: Visualization of adjacency re-
lations in hierarchical data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 741–748, 2006.

[13] R. A. Ruddle, S. J. Payne, and D. M. Jones, “Navigating large-
scale virtual environments: what differences occur between helmet-
mounted and desk-top displays?” Presence: Teleoperators & Virtual
Environments, vol. 8, no. 2, pp. 157–168, 1999.

[14] R. B. Welch, T. Blackmon, A. Liu, B. Mellers, and L. W. Stark, “The
effects of pictorial realism, delay of visual feedback, and observer in-
teractivity on the subjective sense of presence,” Presence: Teleoperators
and Virtual Environments, vol. 5, pp. 263–273, 06 1996.

[15] C. S. Green, A. Pouget, and D. Bavelier, “Improved probabilistic
inference as a general learning mechanism with action video games,”
Current Biology, vol. 20, no. 17, pp. 1573–1579, Sep 2010. [Online].
Available: http://dx.doi.org/10.1016/j.cub.2010.07.040

[16] Reaction time differences in video game and non-video game players
- viewcontent.cgi. [Online]. Available: https://digitalcommons.cwu.edu/
cgi/viewcontent.cgi?article=1689&context=source

[17] S. Kühn, T. Gleich, R. C. Lorenz, U. Lindenberger, and J. Gallinat,
“Playing super mario induces structural brain plasticity: gray matter
changes resulting from training with a commercial video game,”
Molecular Psychiatry, vol. 19, pp. 265 EP –, Oct 2013, original Article.
[Online]. Available: http://dx.doi.org/10.1038/mp.2013.120

[18] L. G. Appelbaum, M. S. Cain, E. F. Darling, and S. R. Mitroff, “Action
video game playing is associated with improved visual sensitivity, but
not alterations in visual sensory memory,” Attention, Perception, &
Psychophysics, vol. 75, no. 6, pp. 1161–1167, Aug 2013. [Online].
Available: https://doi.org/10.3758/s13414-013-0472-7

[19] V. R. Bejjanki, R. Zhang, R. Li, A. Pouget, C. S. Green,
Z.-L. Lu, and D. Bavelier, “Action video game play facilitates
the development of better perceptual templates,” Proceedings of
the National Academy of Sciences, 2014. [Online]. Available:
http://www.pnas.org/content/early/2014/11/05/1417056111

[20] A. V. Berard, M. S. Cain, T. Watanabe, and Y. Sasaki, “Frequent
video game players resist perceptual interference,” PLOS ONE,
vol. 10, no. 3, pp. 1–10, 03 2015. [Online]. Available: https:
//doi.org/10.1371/journal.pone.0120011

[21] I. Granic, A. Lobel, and R. C. Engels, “The benefits of playing video
games.” American psychologist, vol. 69, no. 1, p. 66, 2014.

[22] A. Eichenbaum, D. Bavelier, and C. S. Green, “Video games:
play that can do serious good,” American Journal of Play, vol. 7,
no. 1, pp. 50–72, 2014, iD: unige:84313. [Online]. Available:
https://archive-ouverte.unige.ch/unige:84313

[23] D. A. Bowman, E. T. Davis, L. F. Hodges, and A. N. Badre,
“Maintaining spatial orientation during travel in an immersive virtual
environment,” Presence: Teleoper. Virtual Environ., vol. 8, no. 6,
pp. 618–631, 1999. [Online]. Available: http://dx.doi.org/10.1162/
105474699566521

[24] B. E. Riecke, D. W. Cunningham, and H. H. Bülthoff, “Spatial updating
in virtual reality: the sufficiency of visual information,” Psychological
Research, vol. 71, no. 3, pp. 298–313, May 2007. [Online]. Available:
https://doi.org/10.1007/s00426-006-0085-z

[25] J. W. Regian, W. L. Shebilske, and J. M. Monk, “Virtual
reality: An instructional medium for visual-spatial tasks,” Journal of
Communication, vol. 42, no. 4, pp. 136–149, 1992. [Online]. Available:
http://dx.doi.org/10.1111/j.1460-2466.1992.tb00815.x

[26] B. Sousa Santos, P. Dias, A. Pimentel, J.-W. Baggerman, C. Ferreira,
S. Silva, and J. Madeira, “Head-mounted display versus desktop for
3d navigation in virtual reality: A user study,” Multimedia Tools
and Applications, vol. 41, no. 1, pp. 161–181, Jan. 2009. [Online].
Available: http://dx.doi.org/10.1007/s11042-008-0223-2

[27] R. A. Ruddle and P. Péruch, “Effects of proprioceptive feedback
and environmental characteristics on spatial learning in virtual
environments,” International Journal of Human-Computer Studies,
vol. 60, no. 3, pp. 299 – 326, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1071581903001733

[28] P. Péruch, M. May, and F. Wartenberg, “Homing in virtual environments:
Effects of field of view and path layout,” Perception, vol. 26, no. 3, pp.
301–311, 1997.

[29] F. Wartenberg, M. May, and P. Péruch, “Spatial orientation in virtual
environments: Background considerations and experiments,” in Spatial
cognition. Springer, 1998, pp. 469–489.

[30] R. F. Wang, “Between reality and imagination: When is spatial updating
automatic?” Perception & Psychophysics, vol. 66, no. 1, pp. 68–76, Jan
2004. [Online]. Available: https://doi.org/10.3758/BF03194862

[31] R. Wettel, “Software systems as cities,” Ph.D. Thesis, University of
Lugano, Switzerland, 2010.

[32] M. R. Mine, “Virtual environment interaction techniques,” University of
North Carolina at Chapel Hill, Chapel Hill, NC, USA, Tech. Rep., 1995.

[33] Y. Guan and M. Zheng, “Real-time 3d pointing gesture recognition for
natural hci,” in 2008 7th World Congress on Intelligent Control and
Automation, June 2008, pp. 2433–2436.

[34] M. Nielsen, M. Störring, T. B. Moeslund, and E. Granum, “A procedure
for developing intuitive and ergonomic gesture interfaces for hci,” in
International gesture workshop. Springer, 2003, pp. 409–420.

[35] R. P. McMahan, D. A. Bowman, D. J. Zielinski, and R. B. Brady,
“Evaluating display fidelity and interaction fidelity in a virtual reality
game,” IEEE transactions on visualization and computer graphics,
vol. 18, no. 4, pp. 626–633, 2012.

[36] L. E. Nacke, S. Stellmach, D. Sasse, and C. A. Lindley, “Gameplay
experience in a gaze interaction game,” arXiv preprint arXiv:1004.0259,
2010.

[37] C. Knight and M. Munro, “Virtual but visible software,” in Information
Visualization, 2000. Proceedings. IEEE International Conference on.
IEEE, 2000, pp. 198–205.

[38] T. Panas, R. Berrigan, and J. Grundy, “A 3d metaphor for software
production visualization,” in Information Visualization, 2003. IV 2003.
Proceedings. Seventh International Conference on. IEEE, 2003, pp.
314–319.

[39] T. Panas, T. Epperly, D. Quinlan, A. Saebjornsen, and R. Vuduc,
“Communicating software architecture using a unified single-view visu-
alization,” in Engineering Complex Computer Systems, 2007. 12th IEEE
International Conference on. IEEE, 2007, pp. 217–228.

[40] P. Khaloo, M. Maghoumi, E. Taranta, D. Bettner, and J. Laviola, “Code
park: A new 3d code visualization tool,” in Software Visualization
(VISSOFT), 2017 IEEE Working Conference on. IEEE, 2017, pp. 43–
53.

[41] K. Ogami, R. G. Kula, H. Hata, T. Ishio, and K. Matsumoto, “Using
high-rising cities to visualize performance in real-time,” in Software
Visualization (VISSOFT), 2017 IEEE Working Conference on. IEEE,
2017, pp. 33–42.

[42] A. Schreiber and M. Brüggemann, “Interactive visualization of software
components with virtual reality headsets,” in Software Visualization
(VISSOFT), 2017 IEEE Working Conference on. IEEE, 2017, pp. 119–
123.

[43] D. Baum, J. Schilbach, P. Kovacs, U. Eisenecker, and R. Müller,
“Getaviz: Generating structural, behavioral, and evolutionary views of
software systems for empirical evaluation,” in Software Visualization
(VISSOFT), 2017 IEEE Working Conference on. IEEE, 2017, pp. 114–
118.

[44] Axivion GmbH, “Axivion bauhaus suite,” 08.05.2018. [Online].
Available: http://www.axivion.com/

[45] Apache Commons Project, “Apache commons,” 08.05.2018. [Online].
Available: https://commons.apache.org/

��

View publication statsView publication stats

