
TinySpline: A Small, yet Powerful Library for
Interpolating, Transforming, and Querying NURBS,

B-Splines, and Bézier Curves
Marcel Steinbeck

University of Bremen, Germany
marcel@informatik.uni-bremen.de

Rainer Koschke
University of Bremen, Germany
orcid.org/0000-0003-4094-3444

Abstract—NURBS, B-Splines, and Bézier curves have a wide
range of applications. One of them is software visualization,
where these kinds of splines are often used to depict relations
between objects in a visually appealing manner. For example,
several visualization techniques make use of hierarchical edge
bundles to reduce the visual clutter that can occur when drawing
a large number of edges. Another example is the visualization of
software in 3D, virtual reality, and augmented reality environ-
ments. In these environments edges can be drawn as splines in 3D
space to overcome the natural limitations of the two-dimensional
plane—e.g., the collision of edges with other objects. While Bézier
curves are supported quite well by most UI frameworks and
game engines, NURBS and B-Splines are not. Hence, spline-
based visualizations are considerably more difficult to implement
without in-depth knowledge in the area of splines.

In this paper we present TinySpline, a general purpose library
for NURBS, B-Splines, and Bézier curves that is well suited for
implementing advanced edge visualization techniques—e.g., but
not limited to, hierarchical edge bundles. The core of the library
is written in ANSI C with a C++ wrapper for an object-oriented
programming model. Based on the C++ wrapper, auto-generated
bindings for C#, D, Go, Java, Lua, Octave, PHP, Python, R, and
Ruby are provided, which enables TinySpline to be integrated
into a large number of applications.

I. INTRODUCTION

Software visualization is the attempt to assist developers
in understanding and analyzing complex software systems
by mapping certain characteristics of software onto visual
attributes—exploiting the human ability to recognize patterns
in complex data. In many visualization approaches graphs
with nodes and edges form the input data. For example,
EvoStreets [1], [2] are well suited for visualizing the hier-
archical structure of trees by depicting leaf nodes as three-
dimensional blocks arranged on nested streets (branching
at each level change of the hierarchy). In addition, edges
(representing relations between leaf nodes) can be expressed
by visually connecting related blocks with lines. To reduce the
visual clutter that can occur when drawing a large number of
edges, Holten introduced hierarchical edge bundles [3]. Instead
of drawing edges as straight lines, Holten proposed to utilize
the hierarchical structure of the input graph and to depict edges
as B-Splines where the inner nodes of the node hierarchy
are used to set up the control points of the rendered splines.
Holten implemented and evaluated hierarchical edge bundles
in different two-dimensional layouts, amongst others, radial

and squarified Treemaps, rooted tree layouts, and balloon
layouts. However, due to their genericness, edge bundles can
also be used in three-dimensional layouts [4], [5]. Moreover,
B-Splines are not only suitable for bundling edges but also in
general for rendering edges in a visually appealing manner.

Most UI frameworks and game engines implement functions
for drawing Bézier curves. B-Splines (and their generalization
NURBS), however, are rarely supported—the only library
with support for NURBS/B-Splines we know of is the GLU
NURBS Interface [6]. Thereby, implementing advanced edge
visualization techniques requires a deeper understanding in the
area of splines.

Contributions. This paper presents TinySpline, a program-
ming library for NURBS, B-Splines, and Bézier curves. Al-
though TinySpline is designed as a general purpose library for
these kinds of splines, it is well suited for being integrated into
existing software visualization applications. With TinySpline,
spline-based visualizations can be implemented without having
to know all the intricacies of splines. Currently, the library is
available for twelve different programming languages.

The remainder of this paper is structured as follows. Sec-
tion II gives a short introduction into NURBS, B-Splines,
and Bézier curves. Section III describes TinySpline’s design
and implementation. Section IV provides examples for solving
common tasks—related to the visualization of splines—with
TinySpline. Section V presents a showcase where we use
TinySpline to draw hierarchical edge bundles in software
visualization. Related works are presented in Section VI.
Section VII, eventually, concludes.

II. NURBS, B-SPLINES, AND BÉZIER CURVES

In the following, a brief introduction into NURBS, B-
Splines, and Bézier curves is given. We limit ourselves to
the essential concepts that are necessary to create and visu-
alize these kinds of splines with TinySpline—the introduc-
tion is primarily aimed for developers. For a more exten-
sive introduction—in particular, into the mathematics behind
splines—we refer the reader to existing literature [7].
a) Bézier curves: From among NURBS, B-Splines, and
Bézier curves, Bézier curves are the simplest variant of splines.
Bézier curves have two properties: i) a degree and ii) a set of
control points. The degree and the number of control points



of a Bézier curve are related to each other: A Bézier curve of
degree p has exactly m = p+1 control points (in the following,
we also refer to the order of splines which is p+1). Hence, the
higher the degree (order) of a Bézier curve, the more control
points it has. The lowest possible degree is 0. In this case, the
corresponding curve has only one control point and forms a
point. Bézier curves have proven useful because the shape of a
Bézier curve can be adjusted quite intuitively by modifying its
control points. While Bézier curves start and end at their first
and last control point respectively, they generally do not pass
through their internal control points (it is possible to create
curves that pass through some or even all of their control
points though). Instead, inner control points serve as points of
attraction. Figure 1 shows an example Bézier curve of degree
three (i.e., it has four control points).

Fig. 1: Cubic Bézier curve with four control points P1, P2, P3,
and P4. The curve starts at P1 and ends at P4 (it actually passes
these points). The internal control points P2 and P3 serve as points
of attraction (as if the spline is connected to them by a rubber band).

Most UI frameworks with support for Bézier curves provide
functions for drawing quadratic (p = 2,m = 3,; also known
as parabola) and cubic (p = 3,m = 4) curves. A sequence of
connected (i.e., continuous) Bézier curves is also referred to
as Bézier spline (a piecewise Bézier curve). If a Bézier spline
is Cp−1 continuous, it forms a B-Spline.
b) B-Splines: B-Splines (basis splines) are generalized
Bézier curves. In addition to degree and control points, B-
Splines have a third property: iii) the knot vector (a sequence
of non-decreasing numbers—knots—where the multiplicity of
each knot—i.e., how often it occurs in the sequence—must be
less than or equal to the order of the spline). Based on a given
set of control points, the knot vector can be used to (slightly)
change the shape of the spline—yet, the relationship between
the modifications of the knot vector and the resulting change
in shape is less intuitive than with the control points. In the
context of rendering edges as splines in software visualization
(which is the main focus of this paper), the knot vector of B-
Splines is of less importance and, thus, is not further discussed
in this paper—TinySpline, by default, automatically creates the
desired sequence of knots anyway.

B-Splines can be decomposed into Cp−1 continuous Bézier
splines of the same shape. This is in particular useful when
drawing B-Splines in UI frameworks that support only Bézier
curves. That is, the B-Spline to be drawn is decomposed into
a sequence of Bézier curves which are then drawn one after
another. An example of a decomposed B-Spline is shown in
Figure 2.
c) NURBS: While B-Splines are generalized Bézier
curves, NURBS (Non-uniform rational B-spline) are gener-

Fig. 2: Cubic B-Spline with six control points (red squares) decom-
posed into a Cp−1 continuous Bézier spline of three Bézier curves
(brown, green, and blue).

alized B-Splines—transitively, NURBS are also generalized
Bézier curves. Although being flexible enough in most sce-
narios (e.g., hierarchical edge bundling), there are also shapes
that B-Splines cannot represent exactly—e.g., circles. The
essential extension of NURBS is that control points are given
a weight—weighted control points. NURBS whose control
points all have weight 1 are basically B-Splines. Section IV-A
shows how weighted control points are encoded in TinySpline.
Nowadays, NURBS are commonly used in computer-aided
design, yet, they may also be useful in software visualization.

III. DESIGN AND IMPLEMENTATION

TinySpline is publicly available at GitHub [8] and licensed
under the terms of the MIT license. The library was designed
with the following goals in mind:
G1 Provide a common API for NURBS, B-Splines, and

Bézier curves.
G2 Splines may have any degree and dimensionality (2D, 3D,

etc.).
G3 Treat splines as objects. Protect the internal state of these

objects from unwanted changes (rendering splines in an
invalid state).

G4 In case of errors, provide meaningful error messages.
G5 Make as few assumptions as possible about how splines

are integrated into the client code (e.g., how splines are
drawn). That is, TinySpline is intended as a general pur-
pose library for NURBS, B-Splines, and Bézier curves.

G6 The library should have as few third party dependencies
as possible.

G7 The library should be available for several (desirably as
many as possible) programming languages, so that it can
be used by a larger amount of applications.

The core of the library is written in ANSI C (also referred to
as C89), a C standard that is understood by almost all compiler
suites (e.g., GCC, Clang, and MSVC). In addition, a C++
wrapper (C++98) is provided. The wrapper encapsulates the
structs of the C interface in classes and maps functions to
methods—providing an object-oriented programming model
(G3). Errors reported by the C interface (e.g., when trying
to set up a spline with an invalid number of control poitns;
cf. Sections II and IV-A) are mapped to C++ exceptions
(e.g., std::runtime error) with corresponding error message
(G4). Based on the C++ wrapper, bindings for additional
programming languages are auto-generated using SWIG [9].
At the moment of writing, C#, D, Go, Java, Lua, Octave, PHP,
Python, R, and Ruby are supported (G7).



Fig. 3: TinySpline artifacts. The artifact tinyspline denotes the C interface. The artifact tinysplinecxx denotes the C++ interface.

Figure 3 shows all library artifacts provided by TinySpline
as UML diagram. The files tinyspline.h and tinyspline.c con-
tain the source code of the C core. Likewise, tinysplinecxx.h
and tinysplinecxx.cxx contain the source code of the C++ wrap-
per. TinySpline includes a local copy of the ANSI C library
Parson [10] (parson.h and parson.c). It is used privately (i.e.,
Parson is not exposed by TinySpline’s API) for serialization
and deserialization of splines to and from JSON. This is in
particular useful when sharing splines between programming
languages (e.g., when splines are created in Python but vi-
sualized in Java). Besides Parson, the C and C++ library
depend on the C standard library and the C++ standard library
respectively. Beyond that, they have no further dependencies
(G6). The bindings generated from the C++ library using
SWIG, however, may have additional (as a matter of principle
unavoidable) dependencies—e.g., the runtime library of the
target language. For the sake of overview, these dependencies
are not outlined explicitly in Figure 3. Instead, we refer the
reader to the build instructions of TinySpline that can be found
in the Git repository [8].

IV. USAGE

In this section, we demonstrate how to create, interpo-
late, and draw (i.e., how to prepare the data) splines with
TinySpline—the essentials for using splines in software vi-
sualization. The code snippets listed in this section use
TinySpline’s Python interface. However, they can be adapted
to the other interfaces without much effort.

A. Creating Splines

Splines are created by calling the constructor of class
BSpline. The simplest call only passes the number of desired
control points:

Listing 1: Create a spline with seven control points.
spline = BSpline(7)

This creates a two-dimensional, cubic B-Spline with seven
control points. Instead of using the default values for dimen-
sion and degree, the desired values can be set explicitly:

Listing 2: Create a three-dimensional, quintic spline with ten control
points.
spline = BSpline(10, 3, 5)

Because Bézier curves are a special case of general B-
Splines (m = p + 1) they can simply be represented as B-
Spline objects. For example:

Listing 3: Create a four-dimensional, quadratic Bézier curve with
three control points.
beizer = BSpline(3, 4, 2)

In order to understand how NURBS are created, it should
first be shown how control points are managed in TinySpline.

As stated by G2, splines may have any dimensionality. That
is, control points may consist of any number of components
(for technical reasons, the lower limit is one; nildimensional
splines have no operational purpose anyway). Thus, there is
no explicit representation for control points. Instead, they are
encoded as one-dimensional list. For example:

Listing 4: Setting up control points of a two-dimensional, cubic spline
with four control points.
spline = BSpline(4, 2, 3)
ctrlps = [p0x, p0y, p1x, p1y, p2x, p2y, p3x, p3y]
spline.control_points = ctrlps

As already mentioned in Section II, NURBS, unlike Bézier
curves and B-Spline, have weighted control points—each
control point is assigned a dedicated weight. Weighted control
points can be encoded as homogeneous coordinates of B-
Splines. That is, i) each control point has an additional
component, w 6= 0, and ii) the remaining components are
weighted with w. For example:



Listing 5: Setting up control points of a three-dimensional, quardratic
NURBS with three weighted control points.
nurbs = BSpline(3, 3, 2)
nurbs.control_points = [

p0x*w0, p0y*w0, w0,
p1x*w1, p1y*w1, w1,
p2x*w2, p2y*w2, w2]

Representing NURBS as B-Spline objects with homoge-
neous coordinates has two advantages. Firstly, NURBS, as
with Bézier curves, do not need their own representation
(G1). Secondly, homogeneous coordinates do not need spe-
cial case treatment. Accordingly, all functions provided by
TinySpline—e.g., spline decomposition—can be used seam-
lessly for NURBS, B-Splines, and Bézier curves (G1).

B. Spline Interpolation

Often the situation arises that a spline should not only be
attracted by its inner control points, but actually pass through
them. The process of calculating control points forming a
spline that passes through a set of given points is called
spline interpolation. It should be noted that there is no such
thing as one single method for interpolating splines, but many
different with different objectives. TinySpline provides an
implementation that is well suited for drawing edges as splines
in software visualization: natural cubic spline interpolation (for
more details on the interpolation of splines, we refer the reader
to existing literature [11]). A list of points can be interpolated
as follows (the second parameter of interpolate cubic natural
specifies the dimensionality of the points to interpolate and,
hence, the resulting spline):

Listing 6: Natural cubic spline interpolation.
points = [p0x, p0y, ..., pnx, pny]
spline = BSpline.interpolate_cubic_natural(points, 2)

C. Drawing Splines

Most UI frameworks (and game engines) cannot ren-
der NURBS/B-Splines out-of-the-box but provide—at least
basic—support for Bézier curves. In such case, splines can
be drawn by decomposing them into Bézier splines (using
the method to beziers) and processing each of the Bézier
curve contained therein one after another. The following code
snippets shows a pattern (curve denotes the method provided
by the UI framework in use for drawing Bézier curves):

Listing 7: Drawing a spline as a sequence of Bézier curves.
spline = BSpline(5, 2, 3)
spline.control_points = [...]
ctrlps = spline.to_beziers().control_points
offset = spline.order * spline.dimension
for n in range(int(len(ctrlps) / offset)):

p0x = ctrlps[n * offset]
p0y = ctrlps[n * offset + 1]
p1x = ctrlps[n * offset + 2]
p1y = ctrlps[n * offset + 3]
p2x = ctrlps[n * offset + 4]
p2y = ctrlps[n * offset + 5]
p3x = ctrlps[n * offset + 6]
p3y = ctrlps[n * offset + 7]
curve(p0x, p0y, p1x, p1y, p2x, p2y, p3x, p3y)

If the UI framework in use does not support Bézier curves
either, splines can also be decomposed into a sequence of
connected lines—polyline—using the method sample. If no
argument is passed to sample, TinySpline tries to estimate a
suitable amount of lines. Otherwise, a fixed number of lines
is created. Again, the following code snippets shows a pattern
(line denotes the method provided by the UI framework in use
for drawing lines):

Listing 8: Drawing a spline as a sequence of lines.
spline = BSpline(5, 2, 3)
spline.control_points = [...]
pts = spline.sample()
for p in range(int(len(pts) / spline.dimension - 1)):

p0x = pts[p * spline.dimension]
p0y = pts[p * spline.dimension + 1]
p1x = pts[(p+1) * spline.dimension]
p1y = pts[(p+1) * spline.dimension + 1]
line(p0x, p0y, p1x, p1y)

D. Spline Straightening

Along with hierarchical edge bundles, Holten proposed
spline straightening—diminishing the bundling strength of
splines—so as to resolving bundling ambiguity. The straight-
ening of splines is realized as a function applied to each spline
controlled by a parameter β ∈ [0, 1]. If β is 0, the resulting
spline becomes a straight line connecting its start and end
control points (no bundling at all). If β is 1, the spline keeps
its original shape (full bundling strength). With TinySpline,
splines can be straighten using the method tension:

Listing 9: Straighten a spline with β = 0.85.
spline = BSpline(...)
straightened = spline.tension(0.85)

V. SHOWCASE

Figure 4 shows a screenshot of our visualization tool SEE
(Software Engineering Experience). SEE uses the Unity game
engine for visualizing hierarchical graphs, supporting different
node and edge layouts. The example shown in Figure 4
highlights cloning in the networking component of the Linux
kernel using a balloon layout along with hierarchical edge
bundles. The control points of the splines are computed based
on the center of the hierarchically nested circles. Because
Unity does not support Bézier curves out-of-the-box, we use
TinySpline’s line decomposition feature (cf. Listing 8) in order
to render splines with Unity’s LineRenderer component [12].

VI. RELATED WORKS

NURBS, B-Splines, and Bézier curves have a wide range
of applications (software visualization, computer aided de-
sign, statistics, to name only a few). Accordingly, several
libraries have been implemented (and made public) in the last
years [13], [14], [15], [16], [17], [18], [19], [20]. Among them,
SPLINTER, NURBS-Python (geomdl), and verb are some of
the strongest competitors to TinySpline.

SPLINTER is a C++ library whose main focus is on
function approximation, regression, data smoothing, and data



Fig. 4: Hierarchical edge bundles with TinySpline (β = 0.85).

reduction. In addition to C++, interfaces for C, Matlab, and
Python are provided. SPLINTER, unlike TinySpline, explic-
itly supports P-Splines (penalized B-spline), a spline model
that is well suited for smoothing data—points—rather than
interpolating it.

Geomdl is a feature rich NURBS library written in Python
without external dependencies. The library not only supports
curves, but also surfaces and volumes (which is out of
TinySpline’s scope). Hence, it is well suited for geometric
modeling. Similar to TinySpline, geomdl represents splines as
objects in object-oriented programming.

Verb is a general purpose library for NURBS curves and
surfaces. It is written in the Haxe programming language
and, by Haxe’s design, provides interfaces for several other
languages—at the moment of writing, C++, C#, JavaScript,
PHP, and Python are supported (the main target is JavaScript
though). On the one hand, the interfaces generated by verb do
not rely on native, operating-system-dependent libraries (as
opposed to the interfaces of TinySpline), which simplifies the
distribution of binary packages. On the other hand, SWIG
(the tool that is used by TinySpline to generate bindings)
supports many more target languages, allowing TinySpline
to be integrated into a larger number of applications—e.g.,
applications written in D, Go, R, and Ruby.

The strengths of TinySpline compared to other libraries can
be summarized as follows: i) support for splines of any degree
and dimensionality (most other libraries support only two-
and three-dimensional splines), ii) performance (due to lack
of space we cannot provide numbers though), iii) features
specific to software visualization (e.g., spline straightening),
and iv) bindings for a larger set of programming languages.

VII. CONCLUSION

We presented TinySpline, a library for NURBS, B-Splines,
and Bézier curves. While TinySpline’s core is implemented in
ANSI C, interfaces for C++, C#, D, Go, Java, Lua, Octave,
PHP, Python, R, and Ruby are also provided—allowing the
integration of TinySpline into a large number of applications.

We demonstrated how TinySpline assists in the creation
and rendering of splines in the context of software visu-
alization (without the need to know all the intricacies of
splines). Anyhow, TinySpline is designed as a general purpose
library and, thus, can be used in other contexts, too. For
example, the open-source applications LibreCAD 3 and KiCad
use TinySpline’s spline decomposition feature for processing
splines in computer aided design.

TinySpline is publicly available at GitHub and we encourage
researchers and developers to request and add new features.
We started the development of the library in 2014. Since then,
we constantly improve our code base.

REFERENCES

[1] F. Steinbrückner and C. Lewerentz, “Representing development history
in software cities.” ACM, 2010, pp. 193–202.

[2] F. Steinbrückner, “Consistent software cities: supporting comprehension
of evolving software systems,” Ph.D. dissertation, Brandenburgische
Technische Universität Cottbus, 06 2013. [Online]. Available: https:
//opus4.kobv.de/opus4-btu/frontdoor/index/index/docId/1681

[3] D. H. R. Holten, “Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data,” vol. 12, no. 5, pp. 741–748, Sep. 2006.

[4] M. Steinbeck, R. Koschke, and M.-O. Rüdel, “Comparing the evostreet
visualization technique in two- and three-dimensional environments—a
controlled experiment,” 2019, pp. 231–242.

[5] R. Koschke and M. Steinbeck, “Clustering paths with dynamic time
warping,” in 2020 Working Conference on Software Visualization (VIS-
SOFT), 2020, pp. 89–99.

[6] “Opengl programming guide,” last accessed: 2020/11/15. [Online].
Available: https://www.glprogramming.com/red/chapter12.html

[7] L. Piegl, “On nurbs: a survey,” IEEE Computer Graphics and Applica-
tions, vol. 11, no. 1, pp. 55–71, 1991.

[8] “Tinyspline git repository,” last accessed: 2020/11/15. [Online].
Available: https://github.com/msteinbeck/tinyspline

[9] D. Beazley, “Swig homepage,” 2003, last accessed: 2020/11/15.
[Online]. Available: http://www.swig.org

[10] “Parson git repository,” last accessed: 2020/11/15. [Online]. Available:
https://github.com/kgabis/parson

[11] L. Piegl and W. Tiller, The NURBS Book, 2nd ed. New York, NY,
USA: Springer-Verlag, 1996.

[12] “Unity linerenderer component documentation,” last ac-
cessed: 2020/11/15. [Online]. Available: hhttps://docs.unity3d.com/
ScriptReference/LineRenderer.html

[13] B. Grimstad et al., “SPLINTER: a library for multivariate function
approximation with splines,” http://github.com/bgrimstad/splinter, 2015,
accessed: 2015-05-16.

[14] O. R. Bingol and A. Krishnamurthy, “NURBS-Python: An open-source
object-oriented NURBS modeling framework in Python,” SoftwareX,
vol. 9, pp. 85–94, 2019.

[15] “verb homepage,” last accessed: 2020/11/15. [Online]. Available:
http://verbnurbs.com

[16] “libnurbs homepage,” last accessed: 2020/11/15. [Online]. Available:
http://libnurbs.sourceforge.net

[17] “Gsl documentation,” last accessed: 2020/11/15. [Online]. Available:
https://www.gnu.org/software/gsl/doc/html/bspline.html

[18] “C++ library for cubic spline interpolation,” last accessed: 2020/11/15.
[Online]. Available: https://kluge.in-chemnitz.de/opensource/spline

[19] “Splinelibrary git repository,” last accessed: 2020/11/15. [Online].
Available: https://github.com/ejmahler/SplineLibrary

[20] “b-spline git repository,” last accessed: 2020/11/15. [Online]. Available:
https://github.com/thibauts/b-spline


